Реферат: Абстрактная теория групп

Доказательство.

Будем говорить, что конечная группа G порядка N обладает свойством (Z), если для всякого делителя m числа N существует и притом только одна подгруппа HÌG порядка m. Нам надо доказать, что всякая группа, обладающая свойством (Z) циклическая. Установим прежде всего некоторые свойства таких групп.

Лемма.

Если G обладает свойством (Z), то

1. Любая подгруппа G нормальна.

2. Если x и y два элемента такой группы и их порядки взаимно просты, то xy = yx.

3. Если H подгруппа порядка m такой группы G порядка N и числа m и N/m взаимно просты, то H обладает свойством (Z).

Доказательство леммы.

1. Пусть HÌG . Для любого подгруппа имеет тот же порядок, что и H. По свойству (Z) то есть подгруппа H нормальна.

2. Пусть порядок x равен p, а порядок y равен q. По пункту 1) подгруппы Z(x) и Z(y) нормальны. Значит, Z(x)y = yZ(x) и xZ(y) = Z(y)x и потому для некоторых a и b. Следовательно, . Но, поскольку порядки подгрупп Z(x) и Z(y) взаимно просты, то . Следовательно, и потому xy = yx.

4. Используя свойство (Z) , выберем в G подгруппу K порядка N/m. По 1) эта подгруппа нормальна, а поскольку порядки H и K взаимно просты, эти подгруппы пересекаются лишь по нейтральному элементу. Кроме того по 2) элементы этих подгрупп перестановочны между собой. Всевозможные произведения hk =kh, где hÎH, kÎK попарно различны, так как =e поскольку это единственный общий элемент этих подгрупп. Количество таких произведений равно m N/m = и, следовательно, они исчерпывают все элементы G. Сюръективное отображение является гомоморфизмом с ядром K. Пусть теперь число s является делителем m. Выберем в G подгруппу S порядка s. Поскольку s и N/m взаимно просты, и потому - подгруппа порядка s. Если бы подгрупп порядка s в H было несколько, то поскольку все они были бы и подгруппами G условие (Z) для G было бы нарушено. Тем самым мы проверили выполнение условия (S) для подгруппы H.

Доказательство теоремы.

Пусть - разложение числа N в произведение простых чисел. Проведем индукцию по k. Пусть сначала k = 1, то есть . Выберем в G элемент x максимального порядка . Пусть y любой другой элемент этой группы. Его порядок равен , где u £ s. Группы и имеют одинаковые порядки и по св?

К-во Просмотров: 284
Бесплатно скачать Реферат: Абстрактная теория групп