Реферат: Адсорбционная хроматография
Разделение методом адсорбционной хроматографии осуществляется в результате взаимодействия вещества с адсорбентами, такими, как силикагель или оксид алюминия, имеющими на поверхности активные центры. Различие в способности к взаимодействию с адсорбционными центрами разных молекул пробы приводит к их разделению на зоны в процессе движения с подвижной фазой по колонке. Достигаемое при этом разделение зон компонентов зависит от взаимодействия как с растворителем, так и с адсорбентом.
В основе сорбции на поверхности адсорбента, имеющего гидроксильные группы, лежит специфическое взаимодействие между полярной поверхностью адсорбента и полярными (или способным поляризоваться) группами или участками молекул. К таким взаимодействиям относят диполь-дипольное взаимодействие между постоянными или индуцированными диполями, образование водородной связи вплоть до образования π-комплексов или комплексов с переносом заряда. Возможным и достаточно частым в практической работе является проявление хемосорбции, которая может привести к значительному повышению времени удерживания, резкому снижению эффективности, появлению продуктов разложения или необратимой сорбции вещества.
Изотермы адсорбции веществ имеют линейную, выпуклую или вогнутую форму. При линейной изотерме адсорбции пик вещества симметричен и время удерживания не зависит от размера пробы. Чаще всего изотермы адсорбции веществ нелинейны и имеют выпуклую форму, что приводит к некоторой асимметрии пика с образованием хвоста.
Наибольшее применение в ВЭЖХ находят адсорбенты из силикагеля с разным объемом пор, поверхностью, диаметром пор. Значительно реже используют оксид алюминия и крайне редко — другие адсорбенты, широко применяющиеся в классической колоночной и тонкослойной хроматографии. Основная причина этого — недостаточная механическая прочность большинства прочих адсорбентов, не позволяющая упаковывать их и использовать при повышенных давлениях, характерных для ВЭЖХ.
Полярные группы, обусловливающие адсорбцию и находящиеся на поверхности силикагеля и оксида алюминия, по свойствам близки. Поэтому обычно порядок элюирования смесей веществ и элюотропный ряд растворителей для них одинаковы. Однако различие химического строения силикагеля и оксида алюминия иногда приводит к появлению различий в селективности — тогда предпочтение отдают тому или другому адсорбенту, более подходящему для данной конкретной задачи. Например, оксид алюминия обеспечивает большую избирательность при разделении некоторых многоядерных ароматических углеводородов.
Предпочтение, отдаваемое обычно силикагелю по сравнению с оксидом алюминия, объясняется более широким выбором силикагелей по пористости, поверхности и диаметру пор, а также значительно более высокой каталитической активностью оксида алюминия, нередко приводящей к искажению результатов анализа вследствие разложения компонентов пробы либо их необратимой хемосорбции.
Адсорбционная хроматография на силикагеле
Адсорбционную хроматографию с использованием в качестве наполнителя колонок силикагеля очень широко применяют в классическом варианте жидкостной хроматографии. При однократном разделении силикагель оказывается достаточно удобным, эффективным и недорогим сорбентом. Очень интенсивно используют силикагель в качестве адсорбента для ТСХ (также однократно). Адсорбционная активность силикагеля достаточно легко воспроизводится путем определенных операций гидроксилирования, сушки, активации. Большой опыт применения силикагеля в ТСХ и колоночной хроматографии, естественно, стимулировал широкое его использование на ранних стадиях развития ВЭЖХ.
Обнаружилось, что при многократном использовании достаточно трудно поддерживать колонку с силикагелем в условиях работы, при которых времена удерживания и получаемое разделение оставались бы стабильными (в отличие от ТСХ и классической колоночной ЖХ). Это связано с тем, что алканы, используемые в качестве основных растворителей (н - гексан, н - гептан, изооктан), содержат очень небольшое количество воды (десятки ппм) в состоянии насыщения или меньше, если их осушали тем или иным способом. Силикагель в колонке, не имеющий на поверхности адсорбированной воды, является эффективным осушителем и отнимает воду от растворителя, меняя при этом свою активность как адсорбент. Хроматографические характеристики его при этом, естественно, также изменяются.
Это продолжается до тех пор, пока не установится равновесие между количеством воды, поглощаемой и отдаваемой силикагелем. Если при смене растворителя новая партия будет иметь другую степень насыщенности водой, чем старый растворитель, опять начнется процесс установления нового динамического равновесия, и хроматографические характеристики снова изменятся.
Аналогичный процесс может идти и в обратном направлении, когда растворитель хорошо высушен, а силикагель содержит много адсорбированной воды.
Основная проблема здесь состоит в том, чтобы иметь растворитель, например гексан, с постоянной влажностью, например, составляющей 50% от максимальной. Обычно этого добиваются, смешивая непосредственно перед использованием равные объемы гексана, находящегося в равновесии с водой, и абсолютно безводного.
Если увлажнение и осушку проводят идентично и воспроизводимо, то и влажность получается одна и та же, силикагель работает в состоянии динамического равновесия» и Хроматографические характеристики колонки сохраняются. Правда, установление равновесия занимает много времени, так как для установления первоначального равновесия требуется пропустить через колонку более 200 объемов колонки растворителя.
Существуют еще методы, которые позволяют получить воспроизводимые хроматографические характеристики колонки с силикагелем. Один из них заключается в использовании безводного гексана, модифицированного для получения нужной селективности метиленхлоридом или ацетонитрилом.
Так как их содержание в генсане существенно выше, чем воды (при равной элюирующей силе), равновесие устанавливается существенно быстрее, и его легче поддерживать. При этом задача получения безводного гексана остается.
В другом методе с использованием гексана при его модификации водой применяют так называемую систему контролируемой влажности (СКВ). Метод основан на создании замкнутого цикла растворителя, который после детектора возвращается в систему через большую колонку с обогреваемой термостатом рубашкой.
Большая колонка содержит силикагель или оксид алюминия (увлажненные) и служит для удерживания компонентов проб и поддержания требуемой влажности гексана.
величивая или понижая температуру в рубашке, можно изменять количество воды в циркулирующем гексане и, следовательно, менять параметры удерживания аналитической колонии. Подробно устройство и работа системы СКВ описаны в литературе [6].
При анализе веществ, достаточно сильно взаимодействующих с силикагелем, например фенолов, спиртов, часто алифатические углеводороды модифицируют спиртами, например изопропанолом.
На рис. 1 представлена хроматограмма, демонстрирующая высокую селективность в разделении сложной смеси метилфенолов и фенола: разделены изомеры, очень сложно разделяемые методом газовой хроматографии и обладающие очень близкими свойствами, такие, как м и n-крезолы и 2,4- и 2,5-ксиленолы.
Рис. 1. Хроматограмма смеси аминных стабилизаторов полимеров, полученная на колонке размером 250x4,1 мм с силасорбом-600 (5 мкм), подвижная фаза — гексан — метиленхлорид — изопропанол — диэтил-амин (100:10:1:0,01 по объему), расход 1 мл/мин, детектор — УФ (254 нм), проба 2 мкл: 1 — фенил-β-нафтиламин; 2 — N-фенил-N’-изопропил-n-фенилендиамин; 3 — N-1,3-диметилбутил-N’-фенил-n-фенилендиамин; 4 — N,N'-бис(1,4-диметиламил-n-фенилендиамин)
Наиболее сильное влияние на удерживание фенолов оказывает, как видно из хроматограммы, экранирование гидроксильной группы даже такой малообъемной и слабоэкранирующей группой, как метильная. За счет этого различия происходит четкое разделение на 3 группы: орто -, орто ’ - замещенные; орто - замещенные с неэкрани-рованной гидроксильной группой (не имеющей орто - заместителей). Пример разделения аминных стабилизаторов — на рис. 2.2.
В общем виде можно сформулировать следующее положение: удерживание в адсорбционной хроматографии на силикагеле определяется химической природой функциональных групп или групп, способных к взаимодействию с центрами адсорбции на поверхности силикагеля, а также степенью пространственного затруднения при их сближении до наступления такого взаимодействия. В ряду функциональных групп эмпирический ряд увеличения удерживания выглядит следующим образом: фтор — хлор
—бром — иод — простой эфир — трет- амин — нитрил — нитрогруппа — сложный эфир
—кетон — альдегид — первич-ный амин — амид — спирт — фенолкарбоновая кислота
—сульфо-кислота. транс -Изомеры удерживаются слабее, чем цис -изомеры, изомеры с аксиально расположенными группами — слабее, чем с расположенными экваториально. Если групповое разделение (по типу и количеству функциональных групп) методом адсорбционной хроматографии на силикагеле провести легко, то разделение членов гомологического ряда внутри таких групп, как правило, достигается только для первых членов и быстро падает с ростом числа метиленовых групп.
Популярность силикагеля в качестве сорбента для ВЭЖХ начала падать с появлением и ростом применения полярных привитых сорбентов, таких, как амин, нитрил и диол. Последние более удобны в работе и позволяют подбирать селективность, меняя фазу. Тем не менее есть качества силикагеля, которые обеспечивают ему достаточно надежное будущее в ВЭЖХ. Это прежде всего относительная дешевизна силикагеля, дающая ему большие преимущества при препаративных разделениях, особенно в том случае, когда масштаб их приближается к производственному. Это хорошая механическая прочность, возможность регулировать размер и объем пор, иметь такой сорбент, который можно отмыть кислотой от ионов металлов переменной валентности, прокалить при высокой температуре и т.д. Поэтому, хотя следует ожидать дальнейшего уменьшения использования силикагеля в аналитической практике, его производство и потребление будут увеличиваться за счет препаративной хроматографии.
Адсорбционная хроматография на оксиде алюминия
--> ЧИТАТЬ ПОЛНОСТЬЮ <--