Реферат: Алгебраическая проблема собственных значений

104 FORMAT (1X,I5,19X,3F10.5)

STOP

END

{**********************************************************************}

SUBROUTINE NORML(XL,X)

DIMENSION X(3)

{**********************************************************************}

Подпрограммаnorml.

Эта подпрограмма находит наибольший из трех элементов собственного вектора и нормирует собственный вектор по этому наибольшему элементу.

{**********************************************************************}

# FIND THE LARGEST ELEMENT

XBIG = X(1)

IF(X(2).GT.XBIG)XBIG=X(2)

IF(X(3).GT.XBIG)XBIG=X(3)

# Нормирование по XBIG

X(l) = X(1)/XBIG

X(2) = X(2)/XBIG

X(3) = X(3)/XBIG

XL = XBIG

RETURN

END

{**********************************************************************}

Результат работы программы получаем в виде:

Номер

Итерации

Собственное

Значение

( N / M ** 2 )

Собственный вектор
X (1) X (2) X (3)
0. 1.00000 0. 0.
1. 0.10000 Е 08 1,00000 0.50000 0.60000
2. 0.26000Е 08 0.61923 0.66923 1.00000
3. 0.36392Е 08 0.42697 0.56278 1.00000
4. 0.34813Е 08 0.37583 0.49954 1.00000
5. 0.34253Е 08 0.35781 0.46331 1.00000
6. 0.34000Е 08 0.34984 0.44280 1.00000
7. 0.33870Е 08 0.34580 0.43121 1.00000
8. 0.33800Е 08 0.34362 0.42466 1.00000
9. 0.33760Е 08 0,34240 0.42094 1.00000
10. 0.33738Е 08 0.34171 0.41884 1.00000
11. 0.33726Е 08 0.34132 0.41765 1.00000
12. 0.33719Е 08 0,34110 0.41697 1.00000
13. 0.33714Е 08 0.34093 0.41658 1.00000
14. 0.33712Е 08 0.34091 0.41636 1.00000

Отметим, что для достижения требуемой точности потребовалось 14 итераций.

Определение наименьшего собственного значения методом итераций

В некоторых случаях целесообразно искать наименьшее, а не наибольшее собственное значение. Это можно сделать, предвари­тельно умножив исходную систему на матрицу, обратную A:

А-1 АX =lА-1 X .

Если обе части этого соотношения умножим на 1/l, то получим

1/lХ = A-1 X .

Ясно, что это уже иная задача на собственное значение, для кото­рой оно равно 1/l, а рассматриваемой матрицей является A-1 . Максимум 1/l, достигается при наименьшем l. Таким образом, описанная выше итерационная процедура может быть использо­вана для определения наименьшего собственного значения новой системы.

Определение промежуточных собственных значений методом итераций

Найдя наибольшее собственное значение, можно определить следующее за ним по величине, заменив исходную матрицу мат­рицей, содержащей лишь оставшиеся собственные значения. Используем для этого метод, называемый методом исчерпывания. Для исходной симметричной матрицы A с известным наиболь­шим собственным значением l1 и собственным вектором X 1 мож­но воспользоваться принципом ортогональности собственных векторов, т. е. записать

Х i T Х j =0 при i<>j и Х i T Х j =1 при i=j.

Если образовать новую матрицу A* в соответствии с формулой

A*=A- l1 Х 1 Х 1 T ,

то ее собственные значения и собственные векторы будут связаны соотношением

А* X i =li X i .

К-во Просмотров: 292
Бесплатно скачать Реферат: Алгебраическая проблема собственных значений