Реферат: Анализ и синтез систем автоматического управления и исследование нелинейной системы
— мнимая часть.
Теперь, строим годограф Михайлова на комплексной плоскости:
ω ∈ (0 ; 100)
Рисунок 1.3.1.1 — годограф Михайлова
Таблица 1.3.1.1 — Данные для построения годографа Михайлова
ω | 0 | 2 | 10 | 20 | 40 | 60 | 100 | 400 | 1000 |
Cз (ω) | 2 | 1.968 | 1.2 | -1.2 | -10.8 | -26.8 | -78 | -1278 | -7998 |
Dз (ω) | 0 | 0.359 | 1.704 | 2.832 | 1.056 | -9.936 | -78 | -6072 | -95820 |
Вектор Михайлова повернулся вокруг начала координат в положительном направлении и ушёл в бесконечность в третьем квадранте, что соответствует порядку характеристического уравнения, а это значит, что, согласно критерию Михайлова, система является устойчивой.
1.3.2 Критерий Гурвица.
Характеристическое уравнение передаточной функции замкнутой системы:
.
Коэффициенты характеристического уравнения для определителя Гурвица нумеруем соответственно показателям степени переменной при них:
a0 =2; a1 =0,18; a2 =0,008; a3 =0,000096;
Определитель Гурвица:
Подставляя полученные значения, вычисляем его:
Главный определитель Гурвица положителен. Аналогично исследуем все оставшиеся миноры.
Учитывая положительность всех диагональных миноров, заключаем устойчивость системы.
1.3.3 Критерий Рауса.
Характеристическое уравнение передаточной функции замкнутой системы:
.
Коэффициенты характеристического уравнения для таблицы Рауса нумеруем соответственно показателю степени переменной при них:
a0 =2; a1 =0,18; a2 =0,008; a3 =0,000096;
Таблица 1.3.1 — Таблица Рауса.
Так как все коэффициенты первого столбца таблицы Рауса положительны, можно сделать вывод об устойчивости замкнутой системы.
1.3.4 Критерий Найквиста.
Здесь используется АФЧХ разомкнутой системы:
Рисунок 1.3.4.1 — годограф Найквиста
При стремлении частоты в бесконечность, годограф приходит в начало координат, закручиваясь по часовой стрелке, и не охватывает точку с координатами (–1 ; j0), что свидетельствует об устойчивости как разомкнутой, так и замкнутой системы.
Все критерии оценки устойчивости показали, что система устойчива и в замкнутом, и в разомкнутом состоянии.
1.3.5 Построение области устойчивости САУ.
Характеристическое уравнение замкнутой системы с общим коэффициентом усиления, принятым переменным (k), имеет вид: