Реферат: Анализ производственных функций
Линейная производственная функция
X=F(K,L)=EK K+EL L
Где EK и EL частные эффективности ресурсов.
EK =-фондоотдача , EL = - производитель труда.
Поскольку частные показатели эффективности имеют одинаковую размерность (точнее, одинаково безразмерны), то можно находить любые средние из них.
Эластичности замены труда фондами для линейной ПФ = ¥
эта величина показывает, на сколько процентов надо изменить фондовооруженность, чтобы добиться изменения нормы замены на 1%.
Производственная функция затраты-выпуск
X=F(K,L)=
Где:
Коэффициенты эластичности представленные в виде логарифмических производных факторов показывают, на сколько процентов увеличится выпуск, если фактор возрастет на 1%. Например, согласно ПФ X=0,931K0,539 L0,594
при увеличении основных фондов (ОФ) на 1% валовой выпуск повысится на 0,539%, а при увеличении занятых на 1% — на 0,594%.
Практическая часть
Задача
Дана производственная функция валового внутреннего продукта США по данным 1960-1995 гг.
X=2,248K0,404 L0,803
Валовой внутренний продукт США, измеренный в млрд. дол. в ценах 1987 г. возрос с 1960 по 1995 г. в 2,82 раза, основные производственные фонды за этот же период увеличились в 2,88 раза, число занятых - в 1,93 раза.
Необходимо рассчитать масштаб и эффективность производства.
Решение
Из условия x = 2,82 k =2,88 l =1,93;
('начала находим относительные эластичности по фондам и труду
Затем определяем частные эффективности ресурсов
после чего находим обобщенный показатель эффективности как среднее геометрическое частных: