Реферат: Атом гелия. Двухэлектронный коллектив на примере атома гелия
Для основной конфигурации a2 двухэлектронная волновая функция лишь одна:
Y ºY =a(1)a(2)ºaa.
Здесь нет никаких проблем. Эта функция симметрична к перестановке частиц.
Для возбуждённой конфигурации волновая функция уже не одна. Формально их две:
Y ºY =a(1)b(2)ºab
Y ºY =b(1)a(2) º ba
Введём операцию (оператор) перестановки двух электронов P.
Результаты перестановки переменных – преобразования волновой функции Y получаются следующим образом:
1) В основной конфигурации:
P a(1)a(2) = a(2)a(1)º a(1)a(2).
Перестановка шести аргументов не изменила характеристику функции.
2) В возбуждённой конфигурации:
P a(1)b(2) = a(2)b(1).
Перестановка шести аргументов изменила характеристику функции.
Она (он) переставляет две идентичные частицы между их одноэлектронными состояниями.
Обсудим две возможности - два способа записать результат такой перестановки:
1) Можно зафиксировать нумерацию сомножителей –АО ab и поменять местами электроны. Получится: a(1)b(2)« a(2)b(1).
2) Можно зафиксировать нумерацию электронов и менять местами АО.
Получится: a(1)b(2)« b(1)a(2).
Оба результата физически не различаются, но у второго есть преимущество.
В нём нет нужды специально отмечать номер каждой частицы. Номер электрона просто-напросто совпадает с номером позиции орбитали в цепочке символов: a(1)b(2) º ab и b(1)a(2) º ba.
Соответственно достигается существенное сокращение символической записи:
a(1)b(2)± b(1)a(2) º ab± ba.
Так возникает очень простая символика. Оператор перестановки переводит два произведения – слагаемые коллективной функции друг в друга:
Pab=ba;
Pba=ab.
Эти функции суть произведения Y =ab и Y =ba.
При перестановке частиц между двумя орбиталями (или, что совершенно то же самое, двух орбиталей между двумя частицами) они асимметричны (у них нет никакой перестановочной симметрии), и перестановка просто переводит их друг в друга, т.е.:
ab«ba Y «Y
Физически обязательные свойства перестановочной симметрии приобретают лишь их линейные комбинации-суперпозиции, составленные согласно 4-му постулату квантовой механики. При этом появляются функции двух видов, как-то: