Реферат: Автомобильные датчики и интеллектуальные транспортные системы
Инфракрасный датчик прост и надёжен по конструкции, но его применение в системах автоматического управления связано с некоторыми проблемами. Так, например, в поле зрения датчика не должен попадать уровень земли (дорожного покрытия), и зона действия не должна превышать 3 метров иначе система постоянно будет регистрировать различные помехи, в том числе и естественные.
Ультразвуковой датчик
Основной элемент активного круиз-контроля - ультразвуковой датчик, установленный в переднем бампере или за радиаторной решеткой автомобиля. Его принцип работы аналогичен датчикам парковочного радара, только радиус действия составляет несколько сотен метров, а угол охвата, наоборот, ограничен несколькими градусами. Посылая ультразвуковой сигнал, датчик ждет ответа. Если луч нашел препятствие в виде автомобиля, движущегося с меньшей скоростью и вернулся - значит, необходимо снизить скорость. Как только дорога вновь освобождается, машина разгоняется до первоначальной скорости.
Вот и всё, на этом месте автор может спокойно закончить реферат, так-как основные автомобильные датчики перечислены и даже немного описаны. Но если вы честно (без скорочтения) дочитали до этого места то, похоже, тема вам действительно интересна. Специально для вас автор не жалеет ни времени ни бумаги не чернил, и продолжает! Далее будут описаны датчики, которые вовсе не нужны «умной» машине, но могут быть полезны не менее умному водителю.
Автомобильные датчики дождя.
Автомобильные датчики дождя... То ли это предмет роскоши и явное излишество, то ли это необходимое средство повышения безопасности. Попробуем разобраться вместе. Каждый раз, когда появляется возможность опробовать «на себе» какие-либо новинки, встает вопрос: «Рискнуть или нет?».
Но с датчиком дождя как-то все сразу стало ясно — рискнуть стоит. Во-первых, интересно. Во-вторых, нынешнее лето как-то само собой располагает к подобным экспериментам. В-третьих, поддержать отечественного производителя — благое дело. Прежде всего, для чего нужен такой датчик? Устанавливаемые в автомобили среднего и высокого класса комплекты автоматически включают «дворники» при начале дождя. Лучшие модели еще и выбирают фиксированные скорости работы стеклоочистителей в зависимости от интенсивности осадков. Тем самым водитель освобождается от рутинной работы с подрулевым переключателем и гораздо больше внимания может уделять собственно управлению автомобилем. Так что, как видите, здесь налицо и комфорт, и забота о безопасности.
Российский датчик дождя (ДД), разработанный компанией «Сети и системы», представляет собой комплект, в который входят блок оптического контроля, блок реле, штекерный разъем и кнопка управления. Чтобы все правильно установить, необходимо знать несколько простых правил. Оптический датчик крепится с внутренней стороны ветрового стекла обязательно в зоне работы щеток стеклоочистителя. Место крепления блока реле вы вольны выбирать сами. В «десятке», например, его удобно крепить в нише блока реле и предохранителей. Для управляющей кнопки есть штатное место.
Как же показала себя новинка? Если при выезде вы не забыли включить заветную кнопку, то при первых каплях дождя она включит «дворники» еще до того, как вы сообразите это сделать сами. В отличие от своих импортных аналогов, российский датчик ПЛАВНО меняет частоту движения щеток в зависимости от интенсивности ливня. Кроме этого, датчик может выполнять и одну новую функцию, так сказать, национального свойства. Если встречная или обгоняемая машина окатила вас грязным потоком, в работу включается не только «дворник», но и система омывания. То же самое происходит и при движении по пыльным дорогам. Столь высокую чувствительность прибору обеспечивают не четыре, как у большинства аналогов, а девять светоприемников.
Двухмесячный опыт эксплуатации показал не только высокую оперативность и надежность комплекта, но и его универсальность. Если, например, включить ДД в контур управления стеклоподъемниками или привода люка, то тогда он сам закроет их с наступлением дождя. Самое главное, оказывается, — не забыть выключить автомат во время механической мойки, иначе можно лишиться щеток.
Автомобильные шины с электронными датчиками
Французская компания Michelin собирается устанавливать в свои автомобильные покрышки электронные датчики, которые будут постоянно передавать на бортовой компьютер автомашины данные о давлении. Система Michelin состоит из микросхемы размером со спичечную головку и встроенного радиопередатчика с антенной. Оба элемента будут завулканизированы внутри шины. Как сообщила в интервью Reuters представитель компании Нэн Бэнкс, такое расположение устройства практически не повлияет на качество передачи, так как сигнал ослабевает на 10%.
Видеосистема.
Сущность видеосистемы заключается в контроле «слепых» зон автомобиля. При этом изображение с видеокамер в реальном времени передаётся на монитор установленный в салоне или на место боковых зеркал. Разрабатывается проект, в котором изображение проецируется непосредственно на лобовое стекло при этом, не мешая водителю. Видеокамеры в дорогих системах подкрепляются инфракрасными и ультразвуковыми датчиками, которые в случае опасности заранее предупреждают водителя. Во время поездки по городу камеры наблюдения фиксируют категории автомобилей, дорожную разметку и знаки. Например, автомобиль видит знак "Стоп" и предупреждает водителя о нем. Если же водитель не среагирует, то автомобиль остановится сам.
Заключение.
Верно, говорится, будущее наступает сегодня создание беспилотного автомобиля робота стало вполне возможно. И он уже существует, уже проводятся соревнования между подобными творениями
Автомобили без водителей
Из-за своей зрелищности автомобили-роботы привлекают к себе значительное внимание общественности. Этому обстоятельству способствуют и ставшие регулярными гонки DARPA Grand Challenge, которые уже проводились в 2004-м и 2005 году. Последние же состоялись в ноябре 2007 года.
Впервые о своем намерении организовать соревнования для роботов в DARPA объявили в 2002 году, и DARPA Grand Challenge 2004 состоялись в пустыне Мохаве, где была проложена трасса по пересеченной местности протяженностью более 300 километров. Поставленные условия и новизна задачи вызвали к жизни появление разнообразных монстров, построенных на базе военных внедорожников и тяжелых грузовиков, а также оригинальные конструкции, материалы об этих машинах — просто рай для любителей автоэкзотики. Но результат оказался плачевным; самую большую дистанцию, равную всего 11,78 км, преодолела машина из университета Карнеги-Мелонн, построенная на базе армейского внедорожника Hammer.
Соревнования 2005 года оказались успешнее; пять участников прошли всю трассу. Первое место заняла команда Стэндфордского университета, роботизировавшая стандартный Volkswagen Tuareg, сейчас эта машина после двухлетнего тура в Европу нашла свое место в Смитсоновском музее в Вашингтоне. На пятом месте оказался чудовищный по своим размерам грузовик TerraMax, представленный компанией Oshkosh Truck и лабораторией машинного зрения и интеллектуальных систем из университета Парма (Италия). Эта победа Давида над Голиафом подсказала направление для дальнейшего развития: главным условием ее достижения оказалось качество программного обеспечения. Для обработки данных, поступавших от разных датчиков и систем, команда-победитель написала свыше 100 тыс. строк кодов, были использованы методы машинного обучения. С одной стороны, они позволили компьютеру освоить перенятые от человека приемы вождения, а с другой — в этой системе появились зачатки того, что называют cognitive processing, то есть симуляция процессов познания в аппаратно-программной среде. Успех Стэндфордского университета определил приоритеты для будущих гонок.
Надо заметить, что в DARPA не открыли Америки: проектирование роботизированных автомобилей началось задолго до 2002 года. Попадались и отрывочные сведения об отечественных устройствах, предназначенных для работы в зонах с радиационным загрязнением, но по вполне понятным причинам в открытых источниках они не описаны. Достоверно известно, что в 1977 году механическая лаборатория из Цукубы, академического пригорода Токио, первой создала беспилотный автомобиль. В 80-е годы центром аналогичных работ в Европе стала компания Mercedes-Benz, их возглавлял очень авторитетный специалист в этой области Эрнст Дикманн. В 1986 году под его руководством был построен грузовик VaMoRs, развивший скорость 96 км/час. Команда Дикманна ориентировалась главным образом на создание систем «компьютерного зрения», она использовала транспьютеры британской фирмы INMOS, на которые возлагали большие надежды, и методы параллельного программирования. В 1994-1995 годах наработки перенесли на платформу легкового автомобиля S-класса Daimler-Benz, было построено два экземпляра VITA-2 and UniBwM (VaMP). Эта разработка оказалась наиболее значительным успехом на этом историческом отрезке, автомобиль развивал скорость до 175 км/ч и проезжал по автобану свыше 150 километров без вмешательства человека. В ограниченных масштабах работы продолжаются до сих пор; в 2006 году было даже проведено соревнование European Land-Robot Trial. Два проекта ведутся в Израиле, оба они используют в качестве базы не имеющий аналогов, созданный в этой стране багги Tomcar.
Особого упоминания заслуживает итальянский проект ARGO (1996–2001 годы). В конечном итоге модифицированная и снабженная специальными видеокамерами Lancia Thema прошла свыше 2 тыс. км по дорогам со средней скоростью 90 км/ч, 94% времени она находилась в автоматическом режиме. Руководителем проекта ARGO был профессор Альберто Броджи, он же возглавлял работы по созданию роботизированного автомобиля TerraMax— участника DARPA Grand Challenge 2005.
Беспилотные транспортные средства. В 1987—1995 годах в ходе проекта EUREKA Prometheus, стоившего Европейскому Союзу более 1 млрд. долларов, были выработаны первые практические разработки беспилотных автомобилей. Наиболее известный прототип, VaMP (разработчик — Университет бундесвера в Мюнхене) не использовал лидары из-за недостатка вычислительной мощности тогдашних процессоров. Новейшая их разработка, MuCAR-3 (2006), использует единственный лидар кругового обзора, поднятый высоко над крышей машины, наравне с направленной мультифокальной камерой обзора вперёд и инерциальной навигационной системой. Лидар MuCAR-3 используется подсистемой выбора оптимальной траектории на пересечённой местности, он даёт угловое разрешение в 0.01° при динамическом диапазоне оптического приёмника 1:106, что даёт эффективный радиус обзора 120 м. Для достижения приемлемой скорости сканирования используется пучок из 64 расходящихся лазерных лучей, поэтому один полный «кадр» требует единственного оборота вращающегося зеркала.
С 2003 года правительство США через агентство передовых военных разработок DARPA финансирует разработку и соревнование автомобилей-роботов. Ежегодно проводятся гонки DARPA Grand Challenge; в гонке 2005 года победила машина из Стэнфорда, в основе системы зрения которой — пять лидаров направленного обзора.
Все про автомобили-роботы
Для тех, кто заинтересуется автомобилями-роботами, есть неплохие источники информации. Прежде всего, это специализированный выпуск журнала Computer, выпущенный в декабре 2006 года под девизом «Unmanned Vehicles Come of Age», то есть «Беспилотные автомобили достигли совершеннолетия».
Кроме того, есть два глубоких материала, написанных создателями этих транспортных средств.
Брошюра Джеймса Дьебела Stanley: The Robot That Won The DARPA Grand Challenge (ai.stanford.edu/~diebel/stanley/thrun.stanley05.pdf).
Статья Альберто Броджи The TerraMax Autonomous Vehicle, опубликованнаяв журнале Journal of Field Robotics и выложеннаянасайтеавтора (www.ce.unipr.it/people/broggi/publications/jfr-terramax.html).