Реферат: Билеты по геометрии (11 класс)
Д-во Рассмотрим конус с объемом V, радиусом основания R, высо-той h и вершиной т О . Введем ось Ох (ОМ). Произвольное сечение конуса пл. , ^ к оси Ох , является кругом с центром в т М1 пересе-чения этой пл. с осью Ох. Обозначим радиус через R1 ,а S сечения через S(х) , где х – абсцисса т М1 . Из подобия прямоугольных ∆ ОМ1 А1 и ОМА=> что
ОМ1 | = | R1 | , или | x | = | R1 | откуда | R= | xR | так как | S(x)= pR1 2 | ,то | S(x)= | pR2 |
ОМ | R | h | R | h | h2 |
Применяя основную формулу для вычисления объемов тел при а=0, b=0, получим
h | h | h | ||||||||||
V= | ∫ | πR2 | x2 dx= | πR2 | ∫ | x2 dx= | πR2 | × | x3 | ½ = | 1 | πR2 h |
h2 | h2 | h2 | 3 | 3 | ||||||||
0 | 0 | 0 |
Площадь S основания конуса равна pR2 , поэтому V=1 /3 Sh.
Следствие. Объемом V усеченного конуса , высота кот равна h, а площадь оснований S и S1 вычисляется по формулеV=1 /3 h(S·S1 +√ S·S1 ).
Билет №7
1. Угол между скрещивающимися прямыми
2. Площадь боковой поверхности цилиндра.
1. Пусть АВ и СD – скрещивающиеся прямые . Возьмем произвольную т. М1 пространства и проведем через нее прямые А1 В1 и С1 D1 , соответственно параллельн АВ и СD
Если ∠ между прямыми А1 В1 и С1 D1 =φ, то будем говорить , что∠ между скрещивающимися прямыми АВ и СD=φ. Докажем теперь, что∠ между прямыми не зависит от выбора т. М1 . Действительно , возьмем любую т. М2 и проведем прямые А2 В2 и С2 D2 соответственно парал. АВ и СD Т.к А1 В1 ∥ А2 D2 , С1 D1 ∥ C2 D2 , то стороны углов с вершинами в т.М1 и М2 попарно сонаправлены( ∠А1 М1 С1 и∠А2 М2 С2 , ∠А1 М1 D1 и∠А2 М2 D2 ) потому эти ∠ равны, ⇒что∠ между А2 В2 и С2 D2 так же =φ. В качестве т М можно взять любую точку на одной из скрещивающихся прямых . Например на СD отметить т М и через нее провести А'B' параллельные АВ .Угол между прямыми A'B'и CD= φ
2. Терема: S боковой поверхности цилиндра равна произведению длинны окружности основания на высоту
Разрежем боковую поверхность по образующей АВ и развернем т.о , что все образующие оказались в одной плоскости α . В результате в пл α получится прямоугольник АВВ'А' . Стороны АВ и А'В' –два края разреза боковой поверхности цилиндра по образующей АВ . Это прямоугольник называется разверткой боковой поверхности цилиндра . основание АА' прямоугольника является разверткой окружности основания цилиндра , поэтому АА'=2πr , AB-h, где г- радиус цилиндра , h- его высота . за S бок цилиндра принято считать S её развертки . Т.к S прямоугольника АВВ'А'= АА'•ВА = 2πr•h то, для вычисления S бок цилиндра радиуса к и высоты h формула
S бок =2πrh
Билет № 9
1. Угол между плоскостями (формулировка, примеры)
2. Сложение векторов. Свойства сложения.
2. Возьмем 2 произвольных вектора a и b .Отложим от какой-нибудь т А вектор АВ равный а. Затем от т В отложим ВС=b. Вектор АС называется суммой векторов а и b : АС=a+b.
Это правило сложения векторов называется правилом треугольника . (по этому же правилу складываются и коллинеарные векторы , хотя при их сложении треугольника не получается) Сумма a +b не зависит от выбора т А, от которой при сложении откладывается вектор а. (если например заменить т А на т А1 то вектор АС заменится равным ему вектором А1 С1 Привило треугольника можно сформулировать и в другой форме: для любых точек А,В,и С имеет место равенство АВ+ВС=АС. Для сложения 2-ух неколлинеарных векторов можно пользоваться так же правилом параллелограмма. Для любых векторов а, b и с справедливы равенства: a+b=b+a (перемести-тельный з-н. );(a+b)+с=а+(b+с)(сочетательный з-н). Два нулевых вектора называются противоположными, если их длины равны нулю и они противоположно направлены.Вектором проти-оположным нулевому вектору , считается нулевой вектор. Вектр АВ является проти-воположным вектру ВА
Билет № 10
1. Двугранный угол. Линейный угол двугранного угла.( формулировки , примеры)
2. Умножение вектора на число . Св-ва произведения вектора на число.
1. Двугранным углом называют фигуру , образованную прямой а и 2-мя полуплоскостями с общей границей а, не принадлежащими одной плоскости. Полуплоскости, образующие двугранный угол , называются его гранями.
У двугранного угла 2 грани, отсюда и название. Прямая а – общая граница полуплоскостей- называется ребром двугранного угла. Для измерения двугранного угла отметим на ребре какую-нибудь т. и в каждой грани из этой точки проведем перпендикуляр к ребру. Образованный этими лучами угол называется линейный угол двугранного угла. (ÐАОВ ) ОА^CD CD^ОВ, то плоскость АОВ ^ к прямой СD. Двугранный угол имеет бесконечное множество линейных углов и они равны друг другу. Рассмотрим 2 линейных ÐАОВ и ÐА1 О1 В1 . Лучи ОА и О1 А1 лежат в одной грани ^к ОО1 , поэтому они сонаправлены. Точно так же сонаправлены ОВ и О1В1=> Ð А1 О1 В1 =ÐАОВ. Градусной мерой двугранного угла называется градусная мера его линейного угла . Он может быть прямым , острым, тупым ( 90°, <90°, >90°)
2. Произведение ненулвого вектора а на число k называется такой вектор b , длинна которого равно |k |·|a |, причем вектор a и b сонаправлены при k ≥ 0 и противоположно направлены при k<0. Произведением ненулевого вектора на любое число нулевой вектор. Произведение вектора а на число k обозначается так : ak. Для любого числа k и вектора а векторы а и ka коллинеарны. Из этого определения следует , что произведение любого вектора на число 0 есть нулевой вектор. Для любых векторов а и b и любых чмсел k, l справедливы равенства:
(kl)a= k(al) (сочетательный з-н)
k(a+b)=ka+kb(Ι-ый распределительный з-н)
(k+l)a=ka+la ( II-ой распределительный з-н)
отметим, что (-1)а является вектором противоположному вектору а, т.е. (-1)а = -а. Действитель-но, длины векторов (-1)а и а равны: |(-1)a| =|(-1)|×|а|=а. Кроме того , если вектолр а ненулевой , то векторы (-1) а и а противоположно направлены. Точно так же, как в планеметрии, можно диказать, что если векторы а и b коллинеарны и а¹0 , то существует число k такое, что b= ka.
Билет № 11
1. призма (формулировки , примеры)
2. Скалярное произведение векторов.
1. Призма. Рассмотрим два равных многоугольника А1 А2. ., Ап и В1 В2. ...Вп , расположенных в параллельных пл-тях а и р так, что отрезки А1 В1 ,А2 В2 , ..., Ап Вп, соединяющие соответственные вершины мн-
ков, параллельны.Каждый из п 4- хугольников A 1 A2 B2 B 1 , А2 А3 В3 В2 , .... An A 1 B 1 Bn является п-ммом, так как имеет попарно параллельные про-тивоположные стороны. Мн-к, составленный из 2 равных мн-ков А1 A2 ...An и В1 В2 ...Вп , расположенных в параллельных пл-тях, и n п-ммов наз призмой Мн-ки A 1 A 2 . ... An и B 1 B 2 ...Bn наз основаниями, а п-ммы-бокоеыми гранялш призмы.От резки А1 В1 , А2 В2 ..., АпВп наз бо - коеыми ребрами призмы. Эти ребра как противрпрложные стороны п-ммов последовательно приложенных друг к другу, равны в парал-лельны.Призму с основаниями A 1 A 2 . ... An и B 1 B 2 ...Bn обозначают-A 1 A 2 . ...А n В 1 В2 ...В n и называют п-угольной призмой. 4-ехугольная призма- параллелепипед.^, проведенный из какой-нибудь точки одного ос-нования к плоскости другого основания, называется высотой приз-мы. Если боковые ребра призмы ^к основаниям, то призма наз пря - мой, в противном случае –наклонной. Высота прямой призмы равна ее боковому ребру.Прямая при-зма называется пра - вильной, если ее основания — правильные мн-ки. У такой призмы все боковые грани -равные прямоугольники S полной поверхности. призмы называется сумма площадей всех ее граней, а S боковой поверхности призмы— сумма площа-дей ее боковых граней. Пло-щадь Sполн полной повер-хности выра-жается через площадь S6os боко-вой поверхности и пло-щадь Sосн ос-нования призмы форму Sполн =S6oк+ 2Sосн .
2. Скакалярным произведением 2-ух векторов называется произведение их длин на косинус угла между ними Скал-ое произведение векторов а и b обозначают так :аb . Т. о. ab=|a|×|b|cos (ab). Скал-ое произведение вектора равно 0 тогда, когда эти векторы ^; скал-ый квадрат вектора(т.е скал-ое призведение вектора на себя) = квадрату его длинны.. Скал-ое произведение 2-ух векто-ров можно вычислить, зная координаты этих векторов:скал-ое произведение векторов а{x1 ;y1 ;z1 } и b{x2 ;y2 ;z2 }выражается формулой: аb= x1 x2 +y1 y2 +z1 z2 . Косинус Ða между ненулевыми вектора-ми а{x1 ;y1 ;z1 } и b{x2 ;y2 ;z2 } вычисляется формулой.
соsa= | x1 x2 +y1 y2 +z1 z2 . | В самом деле, так как а b =|а|×|b|, то | cosa= | ab |
√x1 2 +y1 ²+z1 2 ⋅√ x2 2 +y2 ²+z2 2 | |a|×|b| |