Реферат: Билеты по геометрии (11 класс)

10 .а2³) , причем а2 >0 при а¹0

20 .ab=ba(переместительный з-н)

30 .(a+b)c=ac+bc(распределительный з-н)

40 .k(ab)=(ka)b (сочетательный з-н)

Утверждения 1⁰-4⁰относятся и к планиметрии Нетрудно док-ть , что распределительный з-н имеет место для любого числа слагаемых( (a+b+c)d=ad+bd+cd.)

Билет № 12

1. Прямая и правильная призма(формулировки примеры)

2. Существование плоскости , проходящей через данную прямую и данную точку.

1. Если боковые ребра перпендикулярны основаниям, то призма нвзывается прямой , в противном случае наклонной. Высота прямой призмы равна ее боковому ребру.

Прямая призма называется правильной , если ее основания- правильные многоугольники. У такой призмы все боковые грани – равные прямоугольники.

2. Теорема. Через прямую и не лежащую на ней точку проходит плоскость, и приом только одна .

Д-во. Рассмотрим пр а и не лежащую на ней т М. Отметим на прямой а 2 точки Р и Н Точки М,Р и Н не лежат на одной прямой поэтому согласно аксиоме А1 через эти 3 точки проходит пл a. Т.к. 2 точки прямой РиН лежат в пл a., то по аксиоме А2 пл a.проходит через прямую а.Единственность пл, проходящай через прямую а и т М, => из того, что любая пл., проходящая через пр а и т М, проходит через т М, Р и Н .=>, она совпадает с пл a., т.к по аксиоме А1 через 3 точки проходит только одна плоскость.

Билет № 13

1. Параллелепипед. Прямоугольный параллелепипед(формулировка примеры)

2. Теорема о боковой поверхности призмы.

1. Прямоугольный параллелепипед. Параллелепипед называется прямоугольник, если его боковые ребра ^к основанию, а основания представляют собой прямоугольники: коробки,

ящики, комнаты к т. д. прямоугольный параллелепипед ABCD A1 B1 C1 D1 . Его основаниями служат прямоугольники ABCD и A1 B1 C1 D1 a боковые ребра АА1 , ВВ1 , СС1 и DD1 ^к основаниям. Отсюда=>, что АА 1 ^АВ, т. е. боковая граyь АА 1 В1 В — прямоуголь-ник. To же самое можно сказать и об остальных боковых гранях. Та-ким образом, мы обосновали следующее свойство прямоугольного параллелепипеда:

1°. В прямоугольном параллелепипеде все шесть граней прямоугольники. Полупл, в кот расположены смежные грани парал-

да, образуют двугранные углы, кот называются двугранными углами параллелепипеда.

2°. Все двугранные углы прямоугольного параллелепипеда прямые.

Длины трех ребер, имеющих общую вершину, назовем измерениями прямоугольного парал-да. Например, у парал­-да, можно взять длины ребер АВ, AD и АА1 . Длины смежных сторон можно назвать измерениями прямоугольника и поэтому можно сказать, что квадрат диагонали, прямоугольника равен сумме квадратов двух его измерений .

2 . Теорема: S боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы.

Д-во. Боковая поверхность прямой призмы – прямоугольники , основания которых- стороны основания призмы, а высота равна h призмы. S боковой поверхности призмы равна сумме произведений указанных прямоугольников, т.е. равна сумме произведений сторон основания нв высоту h . Вынося множитель h за скобки получим в скобках сумму сторон основания призмы, т.е его периметр P . Итак Sбок =Ph

S=AB•h+BC•h+CA•h=h(AB+BC+CA)=Ph

Билет № 14

1. Пирамида(формулировка , примеры)

2. Существование прямой, параллельной данной прямой и проходящей через данную точку.

1. Пирамида. Рассмотриммногоугольник А1 А2 …Аn и точку Р не лежащую в плоскости этого многоугольника . Соединив т. Р отрезками с вершинами многоугольника, получим n треугольников РА1 А1 , РА2 А3 …,РаnА1 .

Многоугольник, составленный из n –угольника А1 А2 …А n и n тре-угольников , называется пирамидой. Многоугольник А1 А2 …Аn назы-вается основанием , а треугольники- боковыми гранями пирамиды. Т.Р называется вершиной пирамиды , а отрезки РА1 ,РА2 , …, РАn– её боковыми ребрами . Пирамиду с основанием А1 А2 ,…Аn и вершиной Р обозначают так: РА1 А2 …Аn –и называют n –угольной пирамидой. Треугольная пирамида называется тетраэдр. Перпендикуляр , проведенный из вершины пирамиды к плоскости основания , называют высотой пирамиды (РН) Площадью полной поверхности пирамиды называют сумму площадей её граней , а площадью боковой поверх-ности – сумму площадей её боковых граней

2. Т е о р е м а. Через любдю точку пространства, не лежащую на данной прямой, проходит прямая, параллелькая данной, и притом только одна.

Д - во. Рассмотрим прямую a и т М, не лежащую на этой прямой. Через прямую a и т М проходит

К-во Просмотров: 453
Бесплатно скачать Реферат: Билеты по геометрии (11 класс)