Реферат: Диференціал 5
Тоді
1) в деякому прямокутнику
рівняння визначає як однозначну функцію від : ;
2) при ця функція набуває значення :
;
3) на інтервалі функція неперервна і має неперервну похідну.
Знайдемо цю похідну. Оскільки у вказаному інтервалі , то для будь-якої її точки або, що те саме, , де .
Обчислюючи повну похідну, маємо
,
звідки
. (6.61)
Приклад. Знайти похідну функції .
Р о з в ’ я з о к.
.
Нехай задано рівняння
(6.62)
і при цьому виконуються умови, аналогічні умовам 1) - 3). Можна
довести, що рівняння (6.62) визначає в деякому околі точки площини єдину і питому диференційовану функцію , яка набуває значення при , .
Частинні похідні такої функції обчислюються за формулами:
; . (6.63)
Розглянемо деякі застосування теорії неявних функцій. Нехай плоска крива задана рівнянням в точці записується у вигляді
. (6.64)
Рівняння нормалі до кривої в точці записується у вигляді
. (6.65)
Нехай поверхня задана рівнянням . Візьмемо в ній точку .
Рівняння дотичної площини до поверхні в точці записується у вигляді
(6.66)
Рівняння нормалі до тієї самої поверхні в точці має вигляд