Реферат: Дифференциальные и интегральные функции распределения

− трапецеидальные, например, равномерное, треугольное (Симпсона);

− экспоненциальные, например, распределение Лапласа, распределение Гаусса (нормальное);

− семейство распределений Стьюдента (предельное распределение семейства законов Стьюдента – распределение Коши);

− двухмодальные, например, дискретное двузначное распределение, арксинусоидальное распределение, остро- и кругло-вершинные двухмодальные распределения.

Однако чаще всего имеют дело с нормальным и равномерным распределением плотности вероятностей.

Учитывая многовариантность подходов к выбору оценок и в целях обеспечения единства измерений, правила обработки результатов наблюдений обычно регламентируются нормативно-техническими документами (стандартами, методическими указаниями, инструкциями). Так, в стандарте на методы обработки результатов прямых измерений с многократными наблюдениями указывается, что приведенные в нем методы обработки установлены для результатов наблюдений, принадлежащих нормальному распределению.

Глава 4. Характеристики нормального распределения

Нормальное распределение плотности вероятности или распределение Гаусса (рис. 7) характеризуется тем, что, согласно центральной предельной теореме теории вероятностей, такое распределение имеет сумма бесконечно большого числа бесконечно малых случайных возмущений с любыми распределениями.

Рис. 7. Кривые нормального распределения

Применительно к измерениям это означает, что нормальное распределение случайных погрешностей возникает тогда, когда на результат измерения действует множество случайных возмущений, ни одно из которых не является преобладающим. Практически, суммарное воздействие даже сравнительно небольшого числа возмущений приводит к закону распределения результатов и погрешностей измерений, близкому к нормальному.

В аналитической форме нормальный закон распределения выражается формулой

где х – случайная величина; mx – математическое ожидание случайной величины; σ – среднее квадратическое отклонение (СКО); е=2,71828 – основание натурального логарифма; π = 3,14159. Перенеся начало координат в центр распределения mx, и откладывая по оси абсцисс погрешность

Δx = x − mx , получим кривую нормального распределения погрешностей

Для группы из n наблюдений, распределённых по нормальному закону

Рассмотрим несколько свойств нормального распределения погрешностей.

Кривая нормального распределения погрешностей симметрична относительно оси ординат. Это означает, что погрешности, одинаковые по величине, но противоположные по знаку, имеют одинаковую плотность вероятностей, т.е. при большом числе наблюдений встречаются одинаково часто. Математическое ожидание случайной погрешности равно нулю.

Из характера кривой следует, что при нормальном законе распределения малые погрешности будут встречаться чаще, чем большие. Так, вероятность появления погрешностей, укладывающихся в интервал от 0 до Δx1 (рис. 7), характеризуемая площадью S1 , будет значительно больше, чем вероятность появления погрешностей в интервале от Δx2 до Δx3 (площадь S2 ). На рис. 8 изображены кривые нормального распределения с различными средними квадратическими отклонениями, причем σ1 > σ2 > σ3 .

Рис. 4.8. Рассеяние результатов наблюдений

Сравнивая кривые между собой можно убедиться, что чем меньше СКО, тем меньше рассеяние результатов наблюдений и тем больше вероятность того, что большинство случайных погрешностей в них будет мало.

Естественно заключить, что качество измерений тем выше, чем меньше СКО случайных погрешностей. Если вместо случайной величины ввести так называемую нормированную случайную величину

то она также будет распределена по нормальному закону с центром распределения mx , абсцисса которого mx = 0, а σ =1. Поэтому формулу, определяющую плотность вероятности, а также формулу функции распределения величины t можно записать так:


Определенный интеграл с переменным верхним пределом, имеющий вид

К-во Просмотров: 459
Бесплатно скачать Реферат: Дифференциальные и интегральные функции распределения