Реферат: Дифференциальные уравнения гиперболического типа
Вводя новые переменные
,
,
уравнение колебания струны преобразуем к виду:
. (4)
Найдем общий интеграл последнего уравнения. Очевидно, для всякого решения уравнения (4)
,
где - некоторая функция только переменного
. Интегрируя это равенство по
при фиксированном
, получим
, (5)
где и
являются функциями только переменных
и
.Обратно, каковы бы ни были дважды дифференцируемые функции
и
, функция
, определяемая формулой (5), представляет собой решение уравнения (4). Так как всякое решение уравнения (4)может быть представлено в виде (5) при соответствующем выборе
и
, то формула (5) является общим интегралом этого уравнения. Следовательно, функция
(6)
является общим интегралом уравнения (2).
Допустим, что решение рассматриваемой задачи существует; тогда оно дается формулой (6). Определим функции и
таким образом, чтобы удовлетворялись начальные условия:
(7)
. (8)
Интегрируя второе равенство, получим:
где и C – постоянные. Из равенства
находим:
(9)
Таким образом, мы определили функции и
через заданные функции
и
, причем равенства (9) должны иметь место для любого значения аргумента. Подставляя в (6) найденные значения
и
, получим:
или
, (10)
Формулу (10), называемую формулой Даламбера, мы получили, предполагая существование решения поставленной задачи. Эта формула доказывает единственность решения. В самом деле, если бы существовало второе решение задачи (2) – (3), то оно представлялось бы формулой (10) и совпадало бы с первым решением.
Нетрудно проверить, что формула (10) удовлетворяет (в предположении двукратной дифференцируемости функции и однократной дифференцируемости функции
) уравнению и начальным условиям. Таким образом, изложенный метод доказывает как единственность, так и существование решения поставленной задачи.
2.2.2.Физический интерпретация.
Функция , определяемая формулой (10), представляет собой процесс распространения начального отклонения и начальной скорости. Если фиксировать
, то функция
дает профиль струны в момент
, фиксируя
, получим функцию
, дающую процесс движения точки
. Предположим, что наблюдатель, находившийся в точке x=0 в момент t=0, движется со скоростью a в положительном направлении. Введем систему координат, связанную с наблюдателем, полагая
,
. В этой подвижной системе координат функция
будет определятся формулой
и наблюдатель все время будет видеть тот же профиль, что и в начальный момент. Следовательно, функция
представляет неизменный профиль f(x), перемещающийся вправо (в положительном направлении оси x) со скоростью a (распространяющуюся или бегущую волну). Функция f(x+at) представляет, очевидно, волну, распространяющуюся налево (в отрицательном направлении оси x) со скоростью a. Таким образом, общее решение (10) задачи Коши для бесконечной струны есть суперпозиция двух волн
, одна из которых распространяется направо со скоростью a, а вторая – налево с той же скоростью. При этом