Реферат: Дифференциальные уравнения гиперболического типа
- момент инерции прямоугольного сечения относительно своей горизонтальной оси. Обозначим через M(x) момент, действующих на правую часть стержня в каждом сечении. В сечении x+dx, очевидно, действует момент сил, равный –(M+dM).
Избыточный момент –dM уравновешивается моментом тангенциальных сил
.
Отсюда в силу равенства (2) получаем величину тангенциальной силы
. (3)
Приравняв действующую на элемент результирующую силу
произведению массы элемента на ускорение
,
где - плотность стержня, S – площадь поперечного сечения (при этом мы пренебрегаем вращательным движением при изгибе), получаем уравнение поперечных колебаний стержня
(). (1)
Граничными условиями для заделанного конца x=0 являются неподвижность стержня и горизонтальность касательной
, . (4)
На свободном конце должны равняться нулю изгибающий момент (2) и тангенциальная сила (3), откуда следует, что
, . (5)
Для того чтобы полностью определить движения стержня, нужно еще задать начальные условия – начальное отклонение и начальную скорость
, (). (6)
Таким образом, задача сводится к решению уравнения (1) с граничными условиями (4), (5) и с начальными условиями (6).
Будем решать задачу методом разделения переменных, полагая
y=Y(x)T(t). (7)
Подставляя предлагаемую форму решения в (1), имеем:
.
Для функции Y(x) получаем задачу о собственных значениях
, (8)
, , , . (9)
Общее решение уравнения (8) представляется в виде
.
Из условий Y(0)=0, Y’(0)=0 находим C=-A, D=-B. Отсюда следует, что