Реферат: Дифференциальные уравнения гиперболического типа

где .

Для выяснения характера решения (10) удобно пользоваться плоскостью состояний (x,t) или «фазовой плоскостью». Прямые x-at=const и x+at=const являются характеристиками уравнения (2). Функция вдоль характеристики x-at=const сохраняет постоянное значение, функция постоянна вдоль характеристики x+at=const.

Предположим, что f(x) отлична от нуля только в интервале и равна нулю вне этого интервала. Проведем характеристики и через точки и ; они разбивают полуплоскость (x,t>0) на три области I, II, и III (рис. 3, а).

Функция отлична от нуля только в области II, где и характеристики и представляют передний и задний фронты распространяющейся направо волны.

Рассмотрим теперь некоторую фиксированную точку и приведем из нее обе характеристики и , которые пересекут ось x в точках , t=0 и , t=0. Значение функции в точке равно , т. е. определяется значениями функций и в точках и , являющихся вершинами треугольника MPQ (рис. 3, б), образованного двумя характеристиками и осью x. Этот треугольник называется характеристическим треугольником точки . Из формулы (10) видно, что отклонение точки струны в момент зависит только от значений начального отклонения в вершинах P(x0-at0,0) и Q(x0+at0,0) характеристического треугольника MPQ и от значений начальной скорости на стороне PQ. Это становится особенно ясным, если формулу (10) записать в виде

(11)

Начальные данные, заданные вне PQ, не оказывают влияния на значения в точке . Если начальные условия заданы не на всей бесконечной прямой, а на отрезке , то они однозначно определяют решение внутри характеристического треугольника, основанием которого является отрезок .

2.2.3. Пример.

Решение (10) можно представить в виде суммы , где

(12)

. (13)

Если начальная скорость равна нулю (), то отклонение есть сумма левой и правой бегущих волн, причем начальная форма обеих волн определяется функцией , равной половине начального отклонения. Если же , то представляет возмущение струны, создаваемое начальной скоростью.

Рассмотрим распространение начального отклонения, заданного в виде равнобедренного треугольника. Такой начальный профиль можно получить, если оттянуть струну в середине отрезка . На рис. 4 даны последовательные положения струны через промежутки времени .

Наглядное представление о характере процесса распространения можно получить с помощью фазовой плоскости (x, t). Проведем характеристики через точки и ; они разобьют полуплоскость на шесть областей (рис. 5).

Отклонение в любой точке (x,t) дается формулой (12). Поэтому в областях I, III, V отклонение равно нулю, так как характеристический треугольник любой точки из этих областей не имеет общих точек с отрезком , на котором заданы начальные условия. В области II решением является «правая волна» , в области IV – «левая волна» , а в области VI решение есть сумма «левой» и «правой» волн.

3. О колебании стержней.

В курсах методов математической физики основное место отводится уравнениям второго порядка. Однако большое число задач о колебаниях стержней, пластин и т.д. приводит к уравнениям более высокого порядка.

В качестве примера на уравнения 4-го порядка рассмотрим задачу о собственных колебаниях камертона, эквивалентную задаче о колебаниях тонкого прямоугольного стержня, зажатого одним концом в массивные тиски. Определение формы колебаний камертона и его частоты сводится к решению «уравнения поперечных колебаний стержня»

(1)

К этому уравнению приходят во многих задачах о колебании стержней, при расчете устойчивости вращающихся валов, а также при изучении вибрации кораблей.

Приведем элементарный вывод уравнения (1). Рассмотрим прямоуголный стержень длиной , высотой h и шириной b. Выделим элемент длины dx. После изгиба торцевые сечения выделенного элемента стержня, предполагаемые плоскими, образуют угол , Если деформации малы, а длина оси стержня при изгибе не меняется (dl=dx), то

.

Слой материала, отстоящий от оси стержня y=0 на расстоянии , изменяет свою длину на величину . По закону Гука сила натяжения, действующая вдоль слоя, равна

,

где E – модуль упругости материала стержня. Полный изгибающий момент сил, действующих на сечение x, равен

, (2)

К-во Просмотров: 284
Бесплатно скачать Реферат: Дифференциальные уравнения гиперболического типа