Реферат: Дифракція світла

б) Побічні максимуми дифракції можна одержати, якщо чисельник у формулі (24) досягає максимуму. Це можливо за умови, коли

(26)

Після скорочення одержимо

(27)

Вираз (27) є умовою побічних максимумів дифракції на дифракційній решітці.

в) Побічні мінімуми дифракції на дифракційній решітці одержуємо із умови коли чисельник формули (25) буде найменшим, тобто коли

(28)

звідки

(29)

Формула (29) є умовою побічних мінімумів на дифракційній решітці.

Дифракція світла на дифракційній решітці, яка має N щілин показана на рис.5.

Рис.5

Розрахунки показують, що Для достатньо великих значень N побічні мінімуми і побічні максимуми не проявляються. Число головних максимумів дифракції визначається відношенням d до λ ( ), при цьому .

Важливо знати:

а) Внаслідок немонохроматичності біле сонячне світло після проходження дифракційної решітки дає максимуми ІІ, ІІІ і більш високих порядків у вигляді спектрів.

б) Хороша решітка з малим d і великим N дає дифракційні спектри з великою роздільною здатністю. Характерною ознакою дифракційних спектрів є рівномірний розподіл кольорів у спектрі. На відміну від дифракційного спектра, призматичний спектр стиснутий в області червоних кольорів і розширений в області фіолетових кольорів.

Кожна дифракційна решітка характеризується кутовою дисперсією, яка позначається буквою Д

(30)

де – кутова відстань між спектральними лініями, які відрізняються за довжиною хвилі на величину .

Для знаходження кутової дисперсії дифракційної решітки слід продиференціювати формулу головних максимумів дифракції , тобто

звідки

В межах невеликих кутів , тому можна вважати, що

(31)

Таким чином кутова дисперсія обернено пропорційна періоду решітки d . Чим вищий порядок спектра k , тим більша дисперсія.

Роздільною здатністю спектрального приладу, а таким є дифракційна решітка, називають безрозмірну величину

(32)

К-во Просмотров: 382
Бесплатно скачать Реферат: Дифракція світла