Реферат: Дискретно-аналоговое представление

где - интерполирующая (восстанавливающая, синтезирующая) функция. Функция

, (5)


т.е. есть функция с началом отсчета в точкемер выборки первичного сигнала. Суммирование в выражении (4) ведется по всем выборкам, участвующим в обработке. Определение вида функции составляет сущность задачи выбора способа интерполяционной обработки.

На точность функции восстановления функции влияют следующие факторы:

-шумы интерполяции;

-шумы радиолинии;

-погрешности системы.

В дальнейшем будем учитывать только ошибку за счет интерполяции. Т.е. выборки будут считаться точными, а шумы отсутствующими. Тогда выражение для оценки первичного сигнала будет иметь следующий вид:

. (6)

Ошибка интерполяционной обработки в этом случае равна:

. (7)

При этом оценка должна быть получена на некотором интервале интерполяции с учетом выборок, расположенных на конечном интервале обработки . Интервал обработки должен последовательно перемещаться в пределах интервала наблюдения (рисунок 2).

Рисунок 2

Таким образом, функция должна быть восстановлена для всех значений времени, лежащих внутри интервала интерполяции , путем использования выборок в моменты времени .Это возможно потому, что существует корреляционная зависимость между значением первичного сигнала , моментами времени и . Интерполяция белого шума невозможна, т.к. его корреляционная функция есть дельта – функция.

Теоретически необходимо учитывать все отсчеты на интервале наблюдения , т.е. полагать = . Но при этом результаты интерполяции могут быть получены спустя время , и для реализации требуется устройство с большой памятью. С удалением точки опроса от интервала интерполяции уменьшаются корреляционные связи и их учет дает малый вклад в ошибку интерполяции. Поэтому имеют смысл учитывать только те отсчеты, выборки которых коррелированны с функцией на интервале интерполяции , с коэффициентами корреляции К(τ) = 0.05 – 0.2. Конкретные значения К(τ) определяются требованиями к точности интерполяции.

2. Физическая трактовка процессов интерполяции сигналов

Основное математическое соотношение интерполяционной обработки:

, (8)

можно проиллюстрировать следующим образом (рисунок 3).

В качестве интерполяционной функции в этом примере используется функция . Интервалы интерполяции и обработки должны последовательно сдвигаться по времени. Операцию интерполяции можно выполнить с помощью линейного фильтра с импульсной характеристикой вида:

. (9)

Рисунок 3

Для доказательства этого утверждения обозначим сигнал на входе и выходе линейного фильтра через и (рисунок 4):

Рисунок 4

Представим сигнал на входе линейного фильтра в виде последовательности кратковременных импульсов, площадь которых равна соответствующим выборкам

. (10)

К-во Просмотров: 340
Бесплатно скачать Реферат: Дискретно-аналоговое представление