Реферат: Дискретно-аналоговое представление
, (22)
где - точка отсчета, - период опроса, - безразмерное время, которое может непрерывно изменяться в пределах
, при (23)
, при , (24)
На практике интерполяция по Лагранжу используется при n = 1, 2, 3:
1. Ступенчатая интерполяция (полиномы нулевой степени) (рисунок 9).
В этом случае n = 1 и для интерполяции используется лишь одна выборка
, , и .
Рисунок 9
2. Линейная интерполяция (полиномы первой степени) (рисунок 10).
При этом , , и интерполирующие функции имеют вид
, .
Рисунок 10
3. Квадратичная интерполяция (квадратичная интерполяция) (рисунок 11).
При этом , , и интерполирующие функции имеют вид
, , .
Рисунок 11
Можно показать, что верхние оценки относительных ошибок в этом случае равны
, , ,
где - граничная частота спектра сигнала, - частота опроса.
При и частота опроса
, , .
При восстановлении функции по отсчетам обычно получается плавная кривая, поэтому, можно для практических расчетов выбрать частоту опроса по формуле .
5. Определение частоты опроса
Определим частоту опроса первичного сигнала при среднем квадратическом приближении алгебраическими полиномами. Используем показатель верности оценки в форме интегральной средней квадратической ошибки