Реферат: Дискретно-аналоговое представление
(11)
Выражение (11) получается с учетом фильтрующего свойства δ-функции. Если импульсная характеристика линейного фильтра удовлетворяет выражению (9), то соотношение (11) переходит в формулу для интерполяционной обработки:
. (12)
Идеальное восстановление функции на выходе линейного фильтра невозможно, т.к.:
-отклик на выходе линейного фильтра не может появиться раньше соответствующей выборки на входе;
-число выборок не равно бесконечности;
-АЧХ фильтра отличается от идеальной.
3. Задачи идеальной интерполяции
В общем случае формула интерполяции имеет вид:
, (13)
- оценка значения i-ой выборки, - восстановленный первичный сигнал,
.
Интерполяция возможна в том случае, если в сигнале имеются корреляционные связи. Может быть поставлена задача оптимального выбора вида функции , при которой ошибка интерполяции минимальна.
Рассмотрим задачу идеальной интерполяции сигнала при предположении, что , т.е. отсутствуют внешние шумы и ошибки системы.
Пусть непрерывный первичный сигнал описывается корреляционной
функцией . Требуется определить форму интерполирующей функции, обеспечивающей при заданных значениях коэффициента корреляции минимум СКО
. (14)
Можно показать, что в этом случае оптимальная интерполирующая функция имеет вид:
, (15)
где - весовые коэффициенты, однозначно связанные со значениями коэффициентов корреляции в точках , .
Т.о., оптимальная интерполирующая функция может быть определена как взвешенная сумма функций времени равных корреляционной функции первичного сигнала. Как следствие этой теории может бать доказана следующая теорема:
Если на интервале интерполяции корреляционная функция и ее взвешенная сумма хорошо аппроксимируются полиномом, то использование этого приближения обеспечит среднеквадратическое приближение близкое к идеальному. Т.е. требуется хорошая аппроксимация не всей корреляционной функции, а только ее части, приходящейся на интервал интерполяции (рисунок 5).
Рисунок 5
Чем меньше , тем точнее возможна аппроксимация в виде многочлена и тем проще могут быть аппроксимирующие полиномы. Проиллюстрируем эту теорему для сигнала с прямоугольным спектром (рисунок 6):
Рисунок 6
Известно, что в этом случае в соответствии с теоремой
В.А. Котельникова возможно разложение первичного сигнала в ряд: