Реферат: Додавання гармонічних коливань

(31)

Розв’язок рівняння (31) залежить від знака коефіцієнта перед шуканою величиною. Розглянемо випадок, коли цей коефіцієнт позитивний, тобто .

Тоді одержимо рівняння типу

(32)

де

. (33)

Розв’язком рівняння (32) є рівняння типу (9) першої теми:

(34)

Після підстановки (34) у (30) для випадку малих затухань одержуємо розв’язок рівняння (29) у такому вигляді:

(35)

де ─ амплітуда затухаючих коливань, Ао - початкова амплітуда.

Залежність (35) показана на рис. 11 суцільною лінією, а амплітуда коливань — пунктирними лініями.

Проміжок часу , протягом якого амплітуда затухаючих коли- вань зменшується у е разів, називається часом релаксації.

Затухання порушує періодичність коливань, тому затухаючі коливання не є періодичними, а тому до них поняття періоду або частоти незастосовне.

Однак якщо затухання мале, то можна умовно користуватися поняттям періоду як проміжку часу між двома наступними максимумами (або мінімумами) коливної фізичної величини (рис. 11).

Період затухаючих коливань з урахуванням формули (33) дорівнює

(36)


Рис. 11

Якщо Α (t) і Α (t + T) – амплітуди двох послідовних коливань, які відповідають моментам часу, що відрізняються на один період, то їх відношення

,

називається декрементом затухання, а його логарифм

(37)

називається логарифмічним декрементом затухання; N — число коливань,

які виконує коливна система за час зменшення амплітуди в е разів.

Для характеристики втрат енергії коливальною системою з часом, користуються поняттям добротності , яка при малих значеннях логарифмічного декремента є помноженому на 2 відношенню повної накопленої системою енергії до середніх втрат енергії цією системою за час в один період, тобто

(38)

де W ─ повна енергія системи; ΔW(T) ─ середні втрати енергії системою за час в один період (t=T).

Повна енергія коливної системи в момент часу tдорівнює

К-во Просмотров: 216
Бесплатно скачать Реферат: Додавання гармонічних коливань