Реферат: Доверительный интервал. Проверка статистических гипотез
1. Доверительный интервал
Точечные оценки являются приближенными, так как они указывают точку на числовой оси, в которой должно находиться значение неизвестного параметра. Однако оценка является приближенным значением параметра генеральной совокупности, которая при разных выборках одного и того же объема будет принимать разные значения, поэтому в ряде задач требуется найти не только подходящее значение параметра а, но и определить его точность и надежность.
Для этого в математической статистике используется два понятия – доверительный интервал и доверительная вероятность. Пусть для параметра а из опытных данных получена несмещенная оценка Требуется определить возможную при этом величину ошибки и вероятность того, что оценка не выскочит за пределы этой ошибки (надежность).
Зададимся некоторой вероятностью b (например, b = 0,99) и найдем такое значение e > 0, для которого
Представим это выражение в виде
Это значит, что с вероятностью b точное значение параметра а находится в интервале le
le
Здесь параметр а – неслучайная величина, а интервал le является случайным, так как - случайная величина. Поэтому вероятность b лучше толковать, как вероятность того, что случайный интервал le накроет точку а. Интервал le называют доверительным интервалом, а вероятность b - доверительной вероятностью (надежностью).
Пример. Если при измерении какой-то величины Х указывается абсолютная погрешность Dх, то это, по существу, означает, что погрешность измерения, являясь случайной величиной, равномерно распределена в интервале (-Dх, Dх) и где Х* - измеренная величина, а х – ее точное значение. Здесь b = 1, e = Dх и le = (x*- Dх, x* + Dх).
1.1 Доверительный интервал для математического ожидания
В качестве еще одного примера рассмотрим задачу о доверительном интервале для математического ожидания. Пусть проведено n независимых опытов измерения случайной величины Х с неизвестным математическим ожиданием mx и дисперсией s2 . На основании опытных данных Х1 , Х2 , ... , Хn построим выборочные оценки
Требуется построить (найти) доверительный интервал le , соответствующий доверительной вероятности b, для среднего генерального mx .
Так как среднее выборочное представляет сумму n независимых одинаково распределенных случайных величин то при достаточно большом объеме выборки согласно центральной предельной теоремы ее закон близок к нормальному. Существует эмпирическое правило, по которому при объеме выборки n³ 30 выборочное распределение можем считать нормальным.
Ранее было показано, что Найдем теперь такую величину e(b) > 0, для которой выполняется равенство
Считая случайную величину нормально распределенной, имеем
После замены имеем
По табличным значениям функции Лапласа Ф*(z) находим аргумент, при котором она равна b. Если этот аргумент обозначить Zb , то тогда
Среднее квадратичное значение приближенно можно заменить
где
Таким образом, доверительный интервал для среднего генерального равен:
le =
--> ЧИТАТЬ ПОЛНОСТЬЮ <--