Реферат: Дуальные числа
Алгебра дуальных чисел образуется удвоением по Кэли алгебры действительных чисел:
Q = D1 + E * D2
С мнимой единицей удвоения E2=0. Дуальное число есть пара действительных чисел, которые называют его компонентами. Обычно дуальную мнимую единицу обозначают буквой w. Тогда дуальное число может быть представлено:
В такой записи дуального числа q его компоненты q0 и q1 называются действительной (или главной) и дуальной (или мнимой) частями соответственно. Таблица произведений единиц базиса дуальных чисел имеет вид:
1 | w | |
1 | 1 | w |
w | w | 0 |
Дуальные числа q и p считаются равными, если равны их компоненты:
Дуальное число p равно нулю в случае, если p0=0 и p1=0.
Как и для других гиперкомплексных чисел, операции сложения и вычитания для дуальных чисел определяются покомпонентно:
Мнимую часть дуального числа также иногда называют моментной частью, а отношение мнимой части к действительной называют параметром:
, или
если
2. Свойства дуальных чисел.
В силу определения мнимой единицы w² = 0 для умножения дуальных чисел получаем формулу:
Для деления p/q при q0 ¹ 0 получим:
Для возведения дуального числа в степень справедлива формула:
Для извлечения корня степени n из дуального числа p справедлива формула:
В случае же p0 = 0 операция извлечения корня не определена.
Для параметра дуального числа справедливы два интересных соотношения:
Параметр произведения дуальных чисел равен сумме параметров сомножителей:
Параметр частного двух дуальных чисел равен разности параметров делимого и делителя:
Так как для числа p где параметр равен бесконечности и, поскольку действительная часть произведения равна произведению действительных частей, действительную часть дуального числа принято называть модулем дуального числа:
При таком выборе определения модуля для дуального числа сохраняется его основное свойство мультипликативности:
Функция и дифференциал функции.
Будем следовать классическому определению функции как закону отображения области определения в область значений. В случае, если областью определения и областью значений является область дуальных чисел, функцию можно представить покомпонентно:
где f1 и f2 - две вещественные функции двух аргументов.
К основному соотношению в функциональном анализе гиперкомплексных чисел относят аналог уравнений Эйлера. Мы также присоединяюсь к этому мнению в силу чрезвычайной важности этого соотношения:
и для случая дуальных чисел имеем:
В частности,
--> ЧИТАТЬ ПОЛНОСТЬЮ <--