Реферат: Эффект Холла
Реферат
на тему
Эффект Холла
Выполнил:
студент группы 32СУ1
Лазарев Герасим
Проверил:
преподаватель Скидан В.В.
2000
Содержание.
Общие сведения
Объяснение эффекта Холла с помощью электронной теории
Эффект Холла в ферромагнетиках
Эффект Холла в полупроводниках
Эффект Холла на инерционных электронах в полупроводниках
Датчик ЭДС Холла
Список используемой литературы
1.Общие сведения.
Эффектом Холла называется появление в проводнике с током плотностью j , помещённом в магнитное поле Н , электрического поля Ех , перпендикулярного Н и j . При этом напряжённость электрического поля, называемого ещё полем Холла, равна:
Рис 1.1
Ex = RHj sin a , (1)
где a угол между векторами Н и J (a <180° ). Когда H ^ j , то величина поля Холла Ех максимальна: Ex = RHj . Величина R , называемая коэффициентом Холла, является основной характеристикой эффекта Холла. Эффект открыт Эдвином Гербертом Холлом в 1879 в тонких пластинках золота. Для наблюдения Холла эффекта вдоль прямоугольных пластин из исследуемых веществ, длина которых l значительно больше ширины b и толщины d , пропускается ток:
I = jbd (см. рис.);
здесь магнитное поле перпендикулярно плоскости пластинки. На середине боковых граней, перпендикулярно току, расположены электроды, между которыми измеряется ЭДС Холла Vx :
Vx = Ех b = RHj / d. (2)
Так как ЭДС Холла меняет знак на обратный при изменении направления магнитного поля на обратное, то Холла эффект относится к нечётным гальваномагнитным явлениям.
Простейшая теория Холла эффекта объясняет появление ЭДС Холла взаимодействием носителей тока (электронов проводимости и дырок) с магнитным полем. Под действием электрического поля носители заряда приобретают направленное движение (дрейф), средняя скорость которого (дрейфовая скорость) vдр ¹ 0 . Плотность тока в проводнике j = n*evдр , где n — концентрация числа носителей, е — их заряд. При наложении магнитного поля на носители действует Лоренца сила: F = e[Hvдp ] , под действием которой частицы отклоняются в направлении, перпендикулярном vдр и Н . В результате в обеих гранях проводника конечных размеров происходит накопление заряда и возникает электростатическое поле — поле Холла. В свою очередь поле Холла действует на заряды и уравновешивает силу Лоренца. В условиях равновесия eEx = еНvдр , Ex =1/ne Hj , отсюда R = 1/ne (cмз /кулон). Знак R совпадает со знаком носителей тока. Для металлов, у которых концентрация носителей (электронов проводимости) близка к плотности атомов (n »1022 См-3 ), R ~10-3 (см3 /кулон), у полупроводников концентрация носителей значительно меньше и R ~105 (см3 /кулон). Коэффициент Холла R может быть выражен через подвижность носителей заряда m = е t /m* и удельную электропроводность s = j/E = еnvлр /Е :
R= m / s (3)
Здесь m* — эффективная масса носителей, t — среднее время между двумя последовательными соударениями с рассеивающими центрами.
Иногда при описании Холла эффекта вводят угол Холла j между током j и направлением суммарного поля Е : tg j = Ex /E= W t , где W — циклотронная частота носителей заряда. В слабых полях ( W t <<1) угол Холла j » W t , можно рассматривать как угол, на который отклоняется движущийся заряд за время t . Приведённая теория справедлива для изотропного проводника (в частности, для поликристалла), у которого m* и t их— постоянные величины. Коэффициент Холла (для изотропных полупроводников) выражается через парциальные проводимости s э и s д и концентрации электронов nэ и дырок nд :
(a) для слабых полей
(4)
(б) для сильных полей.
При nэ = nд , = n для всей области магнитных полей :
,
а знак R указывает на преобладающий тип проводимости.
Для металлов величина R зависит от зонной структуры и формы Ферми поверхности. В случае замкнутых поверхностей Ферми и в сильных магнитных полях ( W t »1) коэффициент Холла изотропен, а выражения для R совпадают с формулой 4,б. Для открытых поверхностей Ферми коэффициент R анизотропен. Однако, если направление Н относительно кристаллографических осей выбрано так, что не возникает открытых сечений поверхности Ферми, то выражение для R аналогично 4,б.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--