Реферат: Эффективность работы военно-медицинского учреждения
С помощью метода главных компонент можно решить четыре основных типа задач.
Первая задача - отыскание скрытых, но объективно существующих закономерностей, определяемых воздействием внутренних и внешних причин.
Вторая задача - описание изучаемого процесса числом главных компонент m, значительно меньшим, чем число первоначально взятых признаков n. Главные компоненты адекватно отражают исходную информацию в более компактной форме. Выделенные главные компоненты содержат больше информации, чем непосредственно замеряемые признаки.
Третья задача - выявление и изучение стохастической связи признаков с главными компонентами. Выявление признаков, наиболее тесно связанных с данной главной компонентой., что позволяет принять научно обоснованное управляющее воздействие, способствующее повышению эффективности функционирования изучаемого процесса.
Существует возможность использования полученных данных для решения четвертой задачи, которая заключается в прогнозировании хода развития процесса на основе уравнения регрессии, построенного по полученным главным компонентам.
Негативной стороной метода является сложность математического аппарата, требующая знания как теории вероятностей и математической статистики, так и линейной алгебры и математического обеспечения ЭВМ. Однако, в настоящее время, в связи с большим прогрессом в области вычислительной техники и программного обеспечения ЭВМ, большинство вычислительных трудностей относительно легко разрешаются.
2.1.3 Анализ условий допущений и ограничений задачи
В ходе алгоритма нахождения главных компонент требуется найти собственные векторы и собственные значения матрицы парных корреляций. На настоящий момент наиболее быстрыми являются алгоритмы QR разложения [2,5] и их частные случаи. В частности, в связи с тем, что получающиеся в ходе исследования матрицы являются симметричными (симметрическими), то для нахождения собственных чисел и собственных векторов удобен относительно простой метод Якоби [6].
2.2. Обоснование проектных решений
2.2.1. Математическая модель метода главных компонент
Известно, что истинная величина изучаемого объекта содержит по крайней мере два компонента: истинную характеристику оцениваемого явления и ошибку измерения, которая зависит от большого числа причин. Если измерения проводятся в таких областях, как экономика, биология, медицина, психология, то добавляется третья составляющая, зависящая от вариабельности изучаемого признака, индивида или объекта. Таким образом, зарегистрированное значение может быть представлено в виде суммы , где - зарегистрированное значение изменяемого признака н i-ого объекта исследования, - истинное значение (математическое ожидание) измеряемого признака у i - ого индивида, - вариативное значение изменяемого признака i - ого индивида, - ошибка измерения при определении j - ого признака у i - ого объекта исследования.
В основу метода главных компонент положена линейная модель. Если N - число исследуемых объектов, n - число признаков, то математическая модель принимает вид:
, (2.1)
где r,j = 1,2,...n; f - r -я главная компонента; - вес r -ой компоненты в j -ой переменной; -нормированное значение j -ого признака, полученное из эксперимента, на основе наблюдения. В матричной форме y =Af.
Для исследования начальными данными являются ковариации или коэффициенты корреляции. В дальнейшем будем использовать коэффициенты корреляции.
Для установления связи между главными компонентами и коэффициентами корреляции перепишем формулу для любого i в виде:
(2.2)
Вариабельность, зависящая от особенностей объектов, является причиной разброса показаний признаков от объекта к объекту относительно математического ожидания. Полная дисперсия выражается через дисперсию главных компонент, а так как дисперсии нормированных величин равны единице, то можно записать:
.(2.3)
Поскольку главные компоненты ортогональны, то выражение упрощается . Слева записана дисперсия, а справа доли полной дисперсии, относящиеся к соответствующим главным компонентам. Дисперсия является характеристикой изменчивости случайной величины, её отклонений от среднего значения. Полный вклад r-ого факторов дисперсию всех n признаков определяет ту долю общей дисперсии, которую данная главная компонента объясняет.
Этот вклад вычисляется по формуле:
(2.4)
Различают два вида компонент, общие и генеральные. Генеральные главные компоненты существенно связаны со всеми признаками задачи, общие - более чем с одним.
Несмотря на то, что вместо признаков получено такое же количество главных компонент, вклад в общую дисперсию большинства оказывается небольшим. Можно исключить из рассмотрения те компоненты, вклад которых мал.
Итак, при проведении эксперимента мы получаем результаты в виде матрицы наблюдаемых величин ХN,n где N - число наблюдаемых объектов, n - число измеряемых признаков.
Элементы данной матрицы центрируются и нормируются, и мы получаем матрицу Y .
Выясним, что представляют собой весовые коэффициенты между признаками и главными компонентами. Для этого умножим на первую главную компоненту и получим:
. (2.5)
Чтобы получит коэффициент корреляции между j-ым признаком и первой главной компонентой, просуммируем левую часть по всем N наблюдениям и разделим сумму на число наблюдений N, тогда правая часть примет вид: