Реферат: Экстремумы функций многих переменных

Локальные Экстремумы

Определение 1 : Говорят, что функция имеет в точке локальный максимум, если существует такая окрестность точки , для которой для всякой точки M с координатами ( x, y ) выполняется неравенство: . При этом, т. е. приращение функции < 0.

Определение 2 : Говорят, что функция имеет в точке локальный минимум, если существует такая окрестность точки , для которой для всякой точки M с координатами ( x, y ) выполняется неравенство: . При этом, т. е. приращение функции > 0.

Определение 3 : Точки локальных минимума и максимума называются точками экстремума .

Условные Экстремумы

При отыскании экстремумов функции многих переменных часто возникают задачи, связанные с так называемым условным экстремумом. Это понятие можно разъяснить на примере функции двух переменных.

Пусть заданы функция и линия L на плоскости 0xy . Задача состоит в том, чтобы на линии L найти такую точку P(x, y), в которой значение функции является наибольшим или наименьшим по сравнению со значениями этой функции в точках линии L , находящихся вблизи точки P . Такие точки P называются точками условного экстремума функции на линии L . В отличие от обычной точки экстремума значение функции в точке условного экстремума сравнивается со значениями функции не во всех точках некоторой ее окрестности, а только в тех, которые лежат на линии L .

Совершенно ясно, что точка обычного экстремума (говорят также безусловного экстремума ) является и точкой условного экстремума для любой линии, проходящей через эту точку. Обратное же, разумеется, неверно: точка условного экстремума может и не быть точкой обычного экстремума. Поясню сказанное обычным примером. Графиком функции

является верхняя полусфера (Рис 3).

Эта функция имеет максимум в начале координат; ему соответствует вершина M полусферы. Если линия L есть прямая, проходящая через точки А и В (ее уравнение x+y-1=0 ), то геометрически ясно, что для точек этой линии наибольшее значение функции достигается в точке , лежащей посередине между точками А и В. Это и есть точка условного экстремума (максимума) функции на данной линии; ей соответствует точка M1 на полусфере, и из рисунка видно, что ни о каком обычном экстремуме здесь не может быть речи.

Отметим, что в заключительной части задачи об отыскании наибольшего и наименьшего значений функции в замкнутой области нам приходится находить экстремальные значения функции на границе этой области, т.е. на какой-то линии, и тем самым решать задачу на условный экстремум.

Приступим теперь к практическому отысканию точек условного экстремума функции Z= f(x, y) при условии, что переменные x и y связаны уравнением j(x, y) = 0. Это соотношение будем называть уравнение связи. Если из уравнения связи y можно выразить явно через х: y=j(x), мы получим функцию одной переменной Z= f(x, j(x)) = Ф(х).

Найдя значение х, при которых эта функция достигает экстремума, и определив затем из уравнения связи соответствующие им значения у, мы и получим искомые точки условного экстремума.


???, ? ??????????????? ??????? ?? ????????? ????? x+y-1=0 ????? y=1-?. ??????

Легко проверить, что z достигает максимума при х = 0,5; но тогда из уравнения связи y=0,5, и мы получаем как раз точку P, найденную из геометрических соображений.

Очень просто решается задача на условный экстремум и тогда, когда уравнение связи можно представить параметрическими уравнениями х=х(t), y=y(t). Подставляя выражения для х и у в данную функцию, снова приходим к задаче отыскания экстремума функции одной переменной.


Если уравнение связи имеет более сложный вид и нам не удается ни явно выразить одну переменную через другую, ни заменить его параметрическими уравнениями, то задача отыскания условного экстремума становится более трудной. Будем по-прежнему считать, что в выражении функции z= f(x, y) переменная j(x, y) = 0. Полная производная от функции z= f(x, y) равна:

Где производная y`, найдена по правилу дифференцирования неявной функции. В точках условного экстремума найденная полная производная должна ровняться нулю; это дает одно уравнение, связывающее х и у. Так как они должны удовлетворять еще и уравнению связи, то мы получаем систему двух уравнений с двумя неизвестными


??????????? ??? ??????? ? ??????? ????? ???????, ??????? ?????? ????????? ? ???? ????????? ? ????? ????? ??????????????? ??????????? l:

(знак минус перед l поставлен для удобства). От этих равенств легко перейти к следующей системе:

f`x =(x,y)+lj`x (x,y)=0, f`y (x,y)+lj`y (x,y)=0 (*),

которая вместе с уравнением связи j(x, y) = 0 образует систему трех уравнений с неизвестными х, у и l.

Эти уравнения (*) легче всего запомнить при помощи следующего правила: для того, чтобы найти точки, которые могут быть точками условного экстремума функции

Z= f(x, y) при уравнении связи j(x, y) = 0, нужно образовать вспомогательную функцию

Ф(х,у)=f(x,y)+lj(x,y)

Где l-некоторая постоянная, и составить уравнения для отыскания точек экстремума этой функции.

Указаная система уравнений доставляет, как правило, только необходимые условия, т.е. не всякая пара значений х и у, удовлетворяющая этой системе, обязательно является точкой условного экстремума. Достаточные условия для точек условного экстремума я приводить не стану; очень часто конкретное содержание задачи само подсказывает, чем является найденная точка. Описанный прием решения задач на условный экстремум называется методом множителей Лагранжа.

Метод множителей Лагранжа имеет наглядный геометрический смысл, который я сейчас поясню.

Предположим, что на рис 4. Изображены линии уровня функции Z= f(x, y) и линия L, на которой отыскиваются точки условного экстремума.

Если в точке Q линия L пересекает линию уровня, то эта точка не может быть точкой условного экстремумат.к. по одну сторону от линии уровня функция Z= f(x, y) принимает большие значения, а по другую - меньшие. Если же в точке P линия L не пересекает соответствующую линию уровня и, значит, в некоторой окрестности этой точки лежит по одну сторону от линии уровня, то точка P будет как раз являться точкой

условного экстремума. В такой точке линия L и линия уровня Z= f(x, y) =С касаются друг друга (предполагается, что линии гладкие). И угловые коэффициенты касательных к ним должны быть равны. Из уравнения связи j(x, y) = 0 имеем

y`=-j`x /j`y , а из уравнения линии уровня y`=-fx `/fy `. Приравнивая производные и произведя простейшее преобразование мы получим уравнение


??????????? ??????????? ?????? ????, ???? ????? ?????? ??????, ??? ?? ???? ?? ?????? fx `=0, fy `=0. ????? ???????????, ????????, ??????? z = 4-x2 ? ????? ?????? x=0, ??????????????? ???????? z = 4.

К-во Просмотров: 788
Бесплатно скачать Реферат: Экстремумы функций многих переменных