Реферат: Электрические цепи постоянного тока
Закон Ома для участка цепи:
I = U / R или U = RI. (1.1)
Для ветви 1 – 2 (см. рис. 1.2): U3 = R3 I3 – называют напряжением или падением напряжения на резисторе R3 , I3 = U3 / R3 – ток в резисторе.
Первый закон Кирхгофа: сумма токов в узле равна нулю
(1.2)
где т — число ветвей, подключенных к узлу.
При записи уравнений по первому закону Кирхгофа токи, направленные к узлу, берут с одним знаком, как правило со знаком «плюс», а токи, направленные от узла, — с противоположным знаком. Например, для узла 1 (см. рис. 1.2) I1 + I2 - I3 = 0.
Второй закон Кирхгофа. Формулировка 1 : сумма ЭДС в любом контуре электрической цепи равна сумме падений напряжений на всех элементах этого контура
(1.3а)
где n — число источников ЭДС в контуре, m — число элементов с сопротивлением Rk в контуре, Uk = Rk Ik — напряжение или падение напряжения на k-м элементе контура.
Формулировка 2: сумма напряжений на всех элементах контура, включая источники ЭДС, равна нулю, т. е.
(1.3б)
При записи уравнений по второму закону Кирхгофа необходимо:
1) задать условные положительные направления ЭДС, токов и напряжений;
2) выбрать направление обхода контура, для которого записывается уравнение;
3) записать уравнение, пользуясь одной из формулировок, причем слагаемые, входящие в уравнение, берут со знаком «плюс», если их условные положительные направления совпадают с направлением обхода контура, и со знаком «минус», если они противоположны.
Например, для контура II (см. рис. 1.2) при указанном направлении обхода уравнения имеют вид
E2 = R02 I2 + R3 I3 + R4 I4 (формулировка 1)
–U2 + U02 + U3 + U4 = 0. (формулировка 2)
Вторым законом Кирхгофа можно пользоваться и для определения напряжения между двумя произвольными точками схемы. Для этого в уравнения (1.3) необходимо ввести напряжение между этими точками, которое как бы дополняет незамкнутый контур до замкнутого. Например, для определения напряжения Uab (см. рис. 1.2) можно написать уравнение U0l – U02 – Uab = 0, откуда Uab = E1 – E2 = U1 – U2 .
Закон Джоуля-Ленца: количество теплоты, выделяемой в элементе электрической цепи, обладающем сопротивлением R, за время t равно:
Q = PI2 t = GU2 t = UIt = Pt, (1.4)
где G = 1 / R – электрическая проводимость, Р = UI – электрическая мощность.
1.2 Расчет линейных электрических цепей с использованием
законов Ома и Кирхгофа
Законы Ома и Кирхгофа используют, как правило, при расчете относительно простых электрических цепей с небольшим числом контуров, хотя принципиально с их помощью можно рассчитать сколь угодно сложные электрические цепи. Однако решение в этом случае может оказаться слишком громоздким и потребует больших затрат времени. По этой причине для расчета сложных электрических цепей разработаны более рациональные методы расчета, основные из них рассмотрены ниже.
При расчете электрических цепей в большинстве случаев известны параметры источников ЭДС или напряжения, сопротивления элементов электрической цепи, и задача сводится к определению токов в ветвях цепи. Зная токи, можно найти напряжения на элементах цепи, мощность отдельных элементов и электрической цепи в целом, мощность источников и др.
Для определения токов в ветвях электрической цепи необходимо составить систему из «p» уравнений и решить ее относительно токов. При этом по первому закону Кирхгофа записывают (q – 1) уравнений для любых узлов цепи, а недостающие n = p – (q – 1) уравнений записывают по второму закону Кирхгофа для n независимых контуров.
1.3 Основные методы расчета сложных электрических цепей