Реферат: Электропроводность электролитов
Пользуясь таблицей предельных подвижностей ионов и законом Кольрауша, можно легко вычислить предельную электропроводность соответствующих растворов.
Эквивалентная электропроводность растворов солей выражается величинами порядка 100—130 см2 /(г-экв • ом). Ввиду исключительно большой подвижности иона гидроксония величины λ∞ для кислот в 3—4 раза больше, чем λ∞ для солей. Щелочи занимают промежуточное положение.
Движение иона можно уподобить движению макроскопического шарика в вязкой среде и применить в этом случае формулу Стокса:
(34)
где е— заряд электрона; z— число элементарных зарядов иона; r — эффективный радиус иона; η — коэффициент вязкости; Е/1 — напряженность поля.
Движущую силу — напряженность поля Е/1 при вычислении абсолютных подвижностей принимаем равной единице. Следовательно, скорость движения ионов обратно пропорциональна их радиусу. Рассмотрим ряд Li+ , Na+ , К+ . Так как в указанном ряду истинные радиусы ионов увеличиваются, то подвижности должны уменьшаться в тон же последовательности. Однако в действительности это не так. Подвижности увеличиваются при переходе от Li+ к К+ почти в два раза. Из этого можно сделать заключение, что в растворе и в ионной решетке ионы обладают разными радиусами. При этом чем меньше истинный («кристаллохимический») радиус иона, тем больше его эффективный радиус в электролите. Это явление можно объяснить тем, что в растворе ионы не свободны, а гидратированы или (в общем случае) сольватированы. Тогда эффективный радиус движущегося в электрическом поле иона будет определяться в основном степенью его гидратации, т. е. количеством связанных с ионом молекул воды.
Связь иона с молекулами растворителя, в частности с молекулами воды, ионно-дипольная, а так как напряженность поля на поверхности иона лития гораздо больше, чем на поверхности иона калия (ибо поверхность первого меньше поверхности второго, а радиус, т. е. расстояние диполей воды от эффективного точечного заряда в центре иона, меньше), то степень гидратации иона лития больше степени гидратации иона калия. Согласно формуле Стокса многозарядные ионы должны обладать большей подвижностью, чем однозарядные. Скорости движения многозарядных ионов мало отличаются от скоростей движения однозарядных, что, очевидно, объясняется большей степенью их гидратации вследствие большей напряженности поля, создаваемого многозарядными ионами.
Необходимо помнить о том, что применимость формулы Стокса к отдельным ионам недостаточно обоснована. Формула Стокса описывает движение шара в непрерывной среде. Растворитель не является для ионов такой средой, поэтому все вытекающие из формулы Стокса выводы, касающиеся гидратации ионов, носят лишь качественный характер и, по-видимому, применимы для количественной оценки движения лишь больших шарообразных ионов типа N(С4 H9 )4 + .
2.1. Зависимость подвижности ионов от температуры
Предельные подвижности ионов, а также удельная электропроводность электролитов всегда увеличиваются с повышением температуры (в противоположность электропроводности металлов, которая ' уменьшается с повышением температуры). Температурный коэффициент подвижности l/u291 (∆U/∆T ) оказывается довольно большим (~0,02); при нагревании раствора на 1 °С подвижность, а следовательно, и электропроводность возрастают примерно на 2%, что приводит к необходимости применять термостаты для точного измерения электропроводности. Наибольший температурный коэффициент характерен для ионов с относительно малой подвижностью и наоборот. Наличие положительного температурного коэффициента подвижности ионов, по-видимому, объясняется уменьшением вязкости с температурой.
Если это так, то, исходя из формулы Стокса (34), можно прийти к выводу, что
= const (35)
т. е. произведение подвижности (а следовательно, и электропроводности), на коэффициент вязкости является величиной постоянной и, следовательно, температурный коэффициент подвижности должен быть равен величине, обратной температурному коэффициенту вязкости. Действительно, температурный коэффициент подвижности большинства ионов в водных растворах равен 2,3—2,5%, в то время как величина, обратная температурному коэффициенту вязкости воды, равна 2,43%. Однако следует ожидать применимости закона Стокса и, следовательно, уравнения (XVIII, 18) лишь к ионам достаточно большого объема (см. стр. 403).
Произведение предельной подвижности иона ( U 0 , V 0 ) на вязкость η0 растворителя почти не изменяется в широком диапазоне температур. Например, для ацетат-иона в водном растворе произведение V 0 η0 практически постоянно:
t°С- .......... О 18 25 59 75 100 128 153
V 0 η0 .......... 0,366 0,368 0,366 0,368 0,369 0.368 0,369 0,369
В неводных растворах произведение V 0 η0 (или U 0 η0 ) также почти не изменяется с изменением температуры, но эта закономерность иногда и не совсем соблюдается.
Так как λ∞ = U 0 + V 0 то эквивалентная электропроводность при бесконечном разведении с температурой всегда возрастает.
При конечной концентрации связь эквивалентной электропроводности с подвижностью несколько сложнее. Для слабого электролита λ =( U + V ) α . Если с повышением температуры подвижности ионов возрастают, то степень диссоциации может и уменьшаться, поскольку диэлектрическая проницаемость раствора при нагревании уменьшается, т. е. силы взаимодействия между ионами увеличиваются. Следовательно, кривая зависимости электропроводности от температуры может иметь максимум.
Аналогичное явление наблюдается и в сильных электролитах, так как при нагревании не только увеличивается подвижность ионов вследствие уменьшения вязкости, но уменьшения диэлектрическая проницаемость, что приводит к увеличению плотности ионной атмосферы, а следовательно, к увеличению электрофоретического и релаксационного торможений.
2.2. Зависимость подвижности ионов от кристаллохимических радиусов
Рассмотрим ряд ионов: Li+ , Na+ , K+ . Как следует из уравнения движения, скорость движения ионов обратно пропорциональна их радиусу. В указанном ряду истинные радиусы ионов увеличиваются, и подвижности должны уменьшаться в той же последовательности.
В действительности в растворах подвижности ионов увеличиваются. Из этого можно сделать заключение, что в растворе и в ионной решетке ионы обладают различными радиусами. Чем меньше кристаллохимический радиус иона, тем больше его эффективный радиус в электролите. Это явление можно объясни тем, что в растворе ионы не свободны, а гидратированы или в общем случае сольватированы. Эффективный радиус движущегося электрическом поле иона будет определяться гидратации, количеством связанных с ионом молекул воды.
Многовалентные ионы в силу большой гидратной оболочки обладают минимальной подвижностью, так как гидратированы в наибольшей степени.
Ионы гадроксила и гидроксония обладают аномальной подвижностью - подвижность в растворах максимальна.
Предложено несколько теорий, объясняющих подвижность гидроксония и гидроксила. Одна .из теорий подвижность
H3 O+ , ОН- объясняет с помощью эстафетного механизма. По теории эстафетного механизма происходит перескок протона с одной молекулы на другую, сопротивление электролита минимально, следовательно, подвижность увеличивается:
H3 O+ + H2 O = H2 O + H3 O+
3. Аномальная подвижность ионов гидроксония и гидроксила.
Аномально высокая подвижность ионов гидроксония и гидроксила была отмечена давно.
Раньше считали, что в растворе существуют ионы водорода, большая скорость движения которых объясняется исключительно малым радиусом ионов. Несостоятельность этого утверждения стала очевидной после того, как установили, что в растворе имеются не ионы водорода H+ , а ионы гидроксония Н3 О+ . Эти ионы, так же как и ионы гидроксила, гидратированы, и эффективные радиусы их имеют тот же порядок, что и радиусы других ионов. Следовательно, если бы механизм переноса электричества этими ионами был обычным, то подвижность их даже не отличалась бы существенно от подвижностей других ионов. Это и наблюдается в действительности в большинстве неводных растворов. Аномально высокая подвижность H3 O+ и ОН- проявляется только в растворах в воде и простейших спиртах, что, очевидно, связано с особенностями переноса электричества этими ионами, которые отличаются от других ионов тем, что являются ионами самого растворителя – воды.
Известно, что процесс диссоциации воды протекает по схеме:
H2 O + H2 O = OH- + H3 O+
│ _H+ _↑
и сводится к переходу протона, от одной молекулы воды, к другой.Образовавшиеся ионы гидроксония непрерывно, обмениваются. протонами с окружающими молекулами воды, причем обмен протонами" происходит хаотически. Однако при создании разности потенциалов кроме беспорядочного движения возникает и направленное: часть протонов начинает двигаться по силовым линиям поля, направляясь к катоду, и, следовательно, переносит электричество.