Реферат: Элементарная теория сумм Гаусса

Рассмотрим следующую сумму – сумму Гаусса :

где D – целое положительное и (a, D)= 1.

Покажем, что значение суммы будет одним и тем же, если х пробегает любую полную систему вычетов по модулю D.

Действительно, пусть х пробегает полную систему вычетов по модулю D. Тогда х=qD+k , где k =0, 1, …, D-1 , q є Z



Будем иметь :



что и требовалось.

Лемма 1.



Пусть (a, D)=1. Тогда:


Доказательство:


По свойству модуля комплексного числа :

Имеем:


Сделаем замену x = x + t . Когда х и х пробегают полную систему вычетов по модулю D , от х и t пробегают независимо полные системы вычетов по модулю D.

Действительно, пусть х и х пробегают полную систему вычетов по модулю D . Тогда х = qD + k k=0, 1, …, D-1 , q є Z

х = pD + i i=0, 1, …, D-1 , p є Z

Следовательно, t = x – x = (q – p)D + (k – i) = l D + m , где m=0, 1, …, D-1 , l є Z


а) Пусть D – нечетное, т.е. (2а, D)=1


если D делит t.



Если же D не делит t, то последнюю сумму можно записать в виде :


Получили :

Тогда


Отсюда


б) Пусть D делится на 4, т.е. возможно представление : D = 2D , где D – четное и ( a, D )=1 .



Получим :



Так как D четное, то


Следовательно

в) Пусть D = 2 (mod 4) , т.е. D = 4q + 2 , q є Z


Тогда из предыдущего случая имеем : D = 2 (2q+1)= 2D , D - нечетное. Имеем :



Что и требовалось.

Лемма 2.

Если D и D взаимно простые числа, то


S ( aD1 , D2 ) S ( aD2 , D1 ) = S ( a , D1 D2 )

Доказательство:

В этих суммах t1 пробегает полную систему вычетов по модулю D2 , а t2 пробегает полную систему вычетов по модулю D2. При этом D1 t1 + D2 t2 пробегает полную систему вычетов по модулю D1 D2 . Действительно , всего членов в сумме D1 D2 и никакие два несравнимы между собой. Действительно, предположим противное : пусть D1 t1 + D2 t2 = D1 t1 + D2 t2 ( mod D1 D2 )

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 270
Бесплатно скачать Реферат: Элементарная теория сумм Гаусса