Реферат: Элементарные стадии химических реакций основы теории
- Постулат о необходимости соударений молекул (частиц) для реализации химического превращения. Даже в случае мономолекулярных реакций основой всех теорий считается схема Линдеманна-Христиансена, согласно которой молекула реагента А в реакции А ® В приобретает необходимую для превращения в В энергию в результате столкновения с любыми молекулами М (инертного газа, продукта и с другой молекулой реагента).
В случае квазистационарности по [А* ]
(11)
При больших концентрациях М (больших давлениях)
k–1 [M] >> k2 и .
При низких концентрациях М лимитирующей становится первая стадия в прямом направлении с уравнением 2го порядка. Вероятность соударений двух молекул в бимолекулярной реакции или фактор соударений см3 /сек существенно ниже фактора (вероятности) тройных соударений см6 /сек, поэтому вероятность таких реакций низка. Тримолекулярные реакции в подавляющем числе примеров являются блоками бимолекулярных ЭС.
Простые соображения, вытекающие из теории соударений в газовой фазе, позволяют сформулировать первое очень важное правило отбора – молекулярность (m) элементарной стадии не превышает 2 (m£ 2).
В газовой фазе частицы сталкиваются по всему объему. В жидкой фазе – только в свободном объеме клетки из молекул растворителя. В первой сфере такой клетки молекулу реагента А окружает 8 – 12 молекул растворителя. Для того, чтобы столкнуться, молекулы A и B в этом случае должны в результате диффузии попасть из клеток Asol и Bsol в общую клетку (AB)sol , т.е. образовать так называемую диффузионную пару. Поскольку свободный объем клетки Vf составляет 0,2 – 2% от V растворителя, частота столкновений в таком объеме будет больше, чем в объеме V газовой фазы. Экспериментальное отношение констант скорости kж / kг одинаковых бимолекулярных элементарных реакций в неполярных растворителях составляет 10 – 150. Очевидно, что вероятность соударения трех частиц в одной клетке не увеличится заметно по сравнению с газофазными реакциями, а вероятность образования диффузионной тройки в одной клетке ниже вероятности образования диффузионной пары.
В реакциях таких сложных молекул, как ферменты, молекулярность отдельных стадий также не превышает двух. Однако, в случае ферментов в активном центре фермента возможно многоцентровое связывание и синхронное участие в элементарном акте большого числа (3 – 4) активных групп. Таким образом, по отношению к комплексу фермент-субстрат (ES) реакция является, например, бимолекулярной (ES + H2 O), а в полости активного центра происходит многоцентровой процесс. Сильное падение энтропии активации в этом случае компенсируется повышением энтропии за счет изменения третичной структуры белка и его дегидратации в результате вызванной образованием комплекса ES перестройки белка.
- Принцип микроскопической обратимости (постулат) исходит из обратимости любого элементарного акта, т.е. из обратимости любого микроскопического процесса, протекающего на молекулярном уровне. В макроскопическом описании больших ансамблей молекул (частиц) появляются МБР, статистические термодинамические характеристики (DH, DS) и, соответственно, возможность необратимости. Сумма элементарных актов в прямом направлении, т.е. макроскопический процесс, компенсируется суммой элементарных актов в обратном направлении при достижении равновесия. Микроскопически обратимый процесс в макроскопической системе может быть необратимым. В макросистеме обратимых стадий, каждая стадия (реакция) самостоятельно доходит до равновесия, когда изменение химического потенциала Dm (или химического сродства А) станет равным нулю
() (12)
Равенство Dm = DG = –А = 0 означает и равенство скоростей прямой и обратной реакции W+ = W– .
- Принцип детального равновесия (ПДР) определяет статистическое соотношение между константами скорости прямого (k+ ) и обратного (k– ) элементарного процесса в условиях МБР, как константу равновесия этого процесса (k+ /k– = K). ПДР следует из ПМО и равенства скоростей W+ = W– в точке химического равновесия (). ПДР есть макроскопическое проявление ПМО. Взяв в качестве постулата принцип микроскопической обратимости при равновесии в форме W+ = W– , получим ПДР и обратно, положив k+ /k– = K в качестве постулата, приходим к равенству W+ = W– при равновесии. Например, запишем для реакции (9)
(13)
(14)
Примем k+ /k– = K, тогда , т.е.
(15)
Из (15) следует, что при W+ = W– .
Рассмотренный вывод справедлив для случая идеальных газов и идеальных растворов. Из ПМО следует ряд важных следствий, касающихся механизмов сложных реакций. Приведем одно из них – сложная реакция в прямом и обратном направлениях проходит через те же самые ЭС и интермедиаты.
- Закон (уравнение) Аррениуса описывает фундаментальное свойство константы скорости ЭС в условиях МБР – экспоненциальную зависимость от температуры
(16)
Экспериментально, уравнение (16) было получено Худом в 1885 г. Зависимость такого вида была предсказана Вант-Гоффом в рамках равновесной термодинамики (1883 г.) и обоснована Аррениусом в рамках статистической физики (1889 г.). Классический механизм бинарных соударений молекул как упругих шаров приводит к выражению
(17)
С учетом необходимой ориентации молекул получим простейшую форму уравнения
(18)
где p – стерический фактор, Z0 – фактор соударений или общее число соударений. Энергия Е – энергия активации ЭС в уравнениях (17 – 18) есть разность между средней энергией реагирующих частиц и средней энергией всех частиц.
Экспоненциальный множитель в уравнениях выражает долю “активных” столкновений, т.е. тех столкновений, энергия которых равна или выше энергии барьера Е. Такое выражение – следствие того, что основной вклад в Еакт в газовой фазе вносит поступательное движение молекул А и В.