Реферат: Элементы теории устойчивости

Анализ устойчивости непосредственно связан с определением условий равновесия. В линейных системах существуют только одно состояние равновесия. Поэтому зависимые переменные, характеризующие состояние системы, с течением времени приближаются либо к состоянию покоя, либо периодического изменения. В нелинейных же системах возможны ситуации, когда существуют несколько состояний равновесия. Причем достаточно малого возмущения, чтобы начался переходный процесс, который приведет систему к новому состоянию равновесия, существенно отличающемуся от первоначального. Следовательно, при рассмотрении подобных систем необходимо проанализировать особенности их поведения в непосредственных окрестностях всех возможных состояний равновесия.

Если достаточно малое (независимо от того, какими причинами оно вызвано) возмущение приводит к существенному отклонению режима от исходного (установившегося) состояния или от невозмущенного движения, то говорят о нестабильности или неустойчивости положения равновесия или невозмущенного движения. Если же после прекращения действия возмущения система не отклоняется существенно от своего исходного состояния, то такой режим называют устойчивым.

Таким образом, в нелинейной теории недостаточно только получить весь спектр возможных решений. Необходимо еще провести исследование всех решений на устойчивость.

Исследованию вопросов устойчивости посвящено множество работ. Широко известны первые работы в этой области Лагранжа, Рауса, Жуковского и Пуанкаре. Значительным вкладом в теорию устойчивости явилось исследование выдающегося русского математика А. М. Ляпунова « Общая задача об устойчивости движения» (1892), которая еще и сегодня представляет собой основу всех исследований в этой области. А. М. Ляпунов дал строгое математическое определение устойчивости. Рассматривая нелинейные задачи небесной механики, А. М. Ляпунов доказал несколько теорем, решающих в общем виде задачу устойчивости. Он показал, что при малых отклонениях от состояния равновесия правильное суждение об устойчивости можно получить, используя линеаризацию исходного нелинейного уравнения.

Прежде чем перейти к методам исследования устойчивости или неустойчивости движения введем определение устойчивости.

Определение устойчивости и асимптотической устойчивости.


????????? ???????? ?????? ?????????? ?????? ????? ??????????? ????????????????? ??????????? n??? ???????, ??????? ?????? ????? ???? ????????????? ? ????????????? ???????n ???????????????? ????????? 1-?? ??????? ? ????:

Здесь yν (t) являются какими – либо зависимыми переменными, связанными с «движением» (в свете механики), т. е. С временным (динамическим) протеканием процесса; например, в электрических системах это могут быть напряжения, токи, заряды и т. п. Точка сверху означает производную от этих величин по времени: формула


???????? ??????? fν (t) ?????? ?? ??????? ????????? (1) ????????????? ???????? ???????, ??????? ??????? ????????????? ????????? ? ????????????????? ??????? ????????, ??????? ????????? ??? ??????????? ???????? yν (t) . ????????, ??? fν (t) ?????? ????????????? ????????? ??????? ?????????:

???????? ???????? ???????????? yν (t) ? ?????????????? fν (t) ???????? ? ?????? ?????? ??????? t ??????? ??????????? xν (t) :

????? ??? ????????? ??????????:

Ляпунов дал следующее определение устойчивости. Невозмущенное движение называется устойчивым, если для всякого небольшого положительного числа δ > 0 может быть найдено другое такое число ε(δ) , чтобы для всех возмущенных движений yν (t) для начального момента времени t = t0 выполнялось неравенство (4), а во все последующие моменты времени t > t0 было справедливо неравенство (5). В противном случае невозмущенное движение неустойчиво. Иными словами невозмущенное движение устойчиво, если, будучи возмущено в начальный момент времени оно в дальнейшем целиком проходит в непосредственной окрестности своего первоначального состояния и не покидает эту соседнюю область.

Из данного определения устойчивости движения получается устойчивость положения равновесия как частный случай, когда все fν (t)=С­­ν , т.е. являются постоянными величинами.

Более жестким, чем только что данное определение, является определение асимптотической устойчивости. А именно, невозмущенное движение называется асимптотически устойчивым, если оно, во-первых, устойчиво в смысле вышеуказанного определения (4), (5), и, во-вторых, если можно выбрать число δ такое, чтобы для всех возмущенных движений, которые удовлетворяют неравенству (4) дополнительно выполнялось условие (6). Другими словами это означает, что при возмущенном в начальный момент времени t=t0 асимптотически устойчивом движении возмущения не только остаются внутри окрестности первоначального состояния ε(δ) , как при нормальной устойчивости, но и дополнительно с течением времени затухают до нуля.

Итак, возмущенное движение устойчиво, если возмущенное в начальный момент времени движение проходит в его непосредственной окрестности и не покидает определенную соседнюю область. Оно асимптотически устойчиво, если возмущенное движение асимптотически стремится к невозмущенному.

Приведенное определение устойчивости называется устойчивым «в малом». Наряду с ним часто пользуются понятиями об устойчивости «в большом» и «в целом», которые характеризуют поведение движения по отношению к большим начальным возмущениям из определенной области или даже для произвольных начальных возмущений. Такие случаи часто имеют существенное значение в некоторых задачах. Однако во многих практически важных задачах вполне достаточным оказывается исследование устойчивости «в малом». Именно этот вариант и будет рассматриваться в дальнейшем изложении.

Дифференциальные уравнения возмущенного движения; уравнения первого приближения.


?????????????????? (3) ?? ???????, ???????:

где, в соответствии с (1), (2), обозначено



????????? (7) ???????? ???????????? ?????????? xν (t) ? ?????????? ????????????????? ??????????? ???????????? ????????. ??????? ???????? ??????????????? ??????? ????????????? ??????? ??????? ????????? (8). ????????, ????????? ?????????????? ???????? ????????????? ??????????? ???????:

??? ???????, ??? ????? ?????? (8), ??????? Xν ????? ?????????? ???????????? ??????? ????.

??? ?????? ????? ???????????? ???????????? ?????????? ?????? ????? ????????? ???????????? ???????? (7) ????????? ? ??? ?? ???????? ?????????? Xν ? ??????????? ??????? ????? (9). ??? ??? ????? ?????????? ??????? (10), ?? ????????? ????? ? ?????????? ?? ???????? (??? ?????????) ? ????? ????????:

??? аν1 , аν2 , ..., аνn ­ ? ?????????? ???????????? ??? ?????????? ??????? Xν ? ??? ?????????, Xν ? ??????????? ?????? ??? ?????????? ??????????? ???? ????????? ??????????, ??????? ???????????? ?????????? xν ????? ??????? ???? ???????, ? ????? - ???????????? ?????? ????. ?? ?????? ???????, ???? ????????? ???????? ?????????? xν ????, ?? ??? ???????????? ???????????? ????? ?????????? ??????? ?????? ???????? ??????? ? ????????????? ??????????????? ??????? ????????? ???????????? ????????:

Эту систему называют системой уравнений 1-го приближения.

Вопрос о возможности суждения об устойчивости или неустойчивости первоначальной нелинейной системы на основании рассмотрения уравнений 1-го приближения, т. е. Линеаризованной системы уравнений возмущенного движения, впервые был рассмотрен А. М. Ляпуновым для всех случаев исследования уравнений (7). При этом найденные и доказанные им положения об устойчивости линеаризованной системы получаются из общей теории А. М. Ляпунова об устойчивости и неустойчивости.

Методы А. М. Ляпунова по исследованию устойчивости.

Методы исследования были разделены Ляпунов на две категории.

В первом случае устойчивость или неустойчивость разрешается на основании непосредственного исследования уравнений возмущенного движения. При этом требуется конкретное определение общего или частного решения системы уравнений возмущенного движения. Однако это удается лишь в очень редких случаях, поскольку в настоящее время неизвестны регулярные методы решения нелинейных дифференциальных уравнений.

Во втором случае решения системы уравнений возмущенного движения вообще не требуется. Метод состоит в составлении определенной функции L , зависящей от t; x1 ,x2 ,...xn , с особыми свойствами, так называемой функции Ляпунова, из поведения которой и поведения ее производной по времени в окрестности нуля можно сделать вывод об устойчивости или неустойчивости движения.

Положения об устойчивости по методу функции Ляпунова здесь подробно рассматриваться не будут. С ними при желании можно ознакомиться в соответствующей литературе. Ограничимся вытекающими из них положениями об устойчивости линеаризованной системы, которых вполне достаточно для исследования в большинстве практически интересных случаев. Эти положения справедливы стационарных, установившихся состояний или движений, при которых функции Xν в уравнениях (7) или функции Xν в уравнениях (11) не зависят от времени t . Прежде чем приводить положения об устойчивости рассмотрим вкратце для лучшего понимания вопрос об устойчивости непосредственно линейной системы, исследование которой возможно без применения функции Ляпунова, более простым способом.

Положения Ляпунова об устойчивости линеаризованной системы.


Рассмотрим линейную систему дифференциальных уравнений (12). Метод определения решений этой системы хорошо известен из общей теории линейных дифференциальных уравнений с постоянными коэффициентами. А именно, будем искать решения в виде:

где Cν и λ - константы, подлежащие определению. Тогда после сокращения на e­­­­λt ≠0 получим систему алгебраических уравнений:


??? ??????? ????????? ??? ??????????? ??????????? ????????????? Cν ????? ?????????????, ???????? ?? ???? ???????, ???? ???????????? ?? D(λ) ????? ????:

???

????????? (15) ???????????? ????? ?????????????????? ????????? ??????? ???????????????? ????????? (12) ? ???????? ?????????????? ?????????? n-?? ??????? ???????????? λ :

??? ν -?????????? ???????????? ??????????????????? ?????????, ??????? ???????????? ?????????????? aνi ???????????? (16) ? ??????? (12). ????????? (17) ????? ? ????? ?????? n ????????? ??????????? ??????:

??? λ i , λ i ’’ -?????????????? ?????????????? ? ?????? ????? ??????, ? j -?????? ???????. ????? ????? ??????? ??????? (12) ????? ????? ????? ???? ??????? ??????? (13) ? ????? ???? ???????????? ? ????:

где постоянные Cνi определяются конкретными начальными условиями задачи, т. е. начальными возмущениями системы.

На основании общего решения задачи о возмущенном движении линейной системы (12), полученного в виде соотношений (19), (18) можно сделать следующие выводы об устойчивости.


1. ???? ???????????? ????? ???? ?????? ??????????????????? ????????? ????????????

то выполняется условие (6). В этом случае линейная система асимптотически устойчива.


2. ???? ????? ?????? ??????????????????? ????????? ???????? ???? ?? ???? ? ????????????? ???????????? ??????

то в решении xν­ (t) (19) будет присутствовать хотя бы одно слагаемое, которое с течением времени будет неограниченно нарастать. В этом случае линейная система неустойчива.

3. Если среди корней характеристического уравнения нет корней с положительной вещественной частью (21), однако имеются корни с вещественными частями, равными нулю


то выполняется условие (5). В этом случае линейная система просто устойчива.

Положения Ляпунова об устойчивости исходной нелинейной системы.

Обратимся теперь к нелинейной системе (7). А.М. Ляпунову удалось показать, что на основе анализа линеаризованной системы (12) можно сделать довольно существенные выводы и о поведении исходной нелинейной системы. Сформулируем следующие основные положения Ляпунова, которые примем без доказательств.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 191
Бесплатно скачать Реферат: Элементы теории устойчивости