Реферат: Финансовые риски в страховом бизнесе модели и методы оценки
Процесс риска в данном случае . В силу независимости N ( t ) и X i имеем EX ( t ) = λ · t · μ . Премии, собранные к моменту t , П( t ) = c · t — линейная функция времени.
Выбирая коэффициент нагрузки
(18)
получаем равенство, определяющее скорость поступления премий:
(19)
с = (1 + θ) · λ · μ .
Коэффициент нагрузки θ задает долю превышения скорости поступления премий над скоростью выплаты страховых возмещений. В исследованиях некоторых авторов [1, 5] коэффициент нагрузки называется надбавкой безопасности.
Таким образом, определив по эмпирическим данным параметр θ и рассчитав затем поправочный коэффициент в зависимости от уровня начального резерва (капитала) u , можно оценить верхнюю границу разорения (19) и соответственно нижнюю границу вероятности неразорения.
Общим выводом приведенной модели является то, что вероятность неразорения тем больше, чем больше поправочный коэффициент. То есть поправочный коэффициент, учитывающий скорость поступления требований, скорость поступления премий, распределения размеров убытков, является интегральной характеристикой возможности выполнения страховой компанией своих обязательств. Следует отметить, что данная модель имеет существенную особенность. В ней исследуется динамический процесс, который составляют поступления премий по вновь заключенным договорам и выплаты страховых возмещений по всем действующим на данный момент договорам. Поэтому рассматриваемая модель ориентирована скорее не на замкнутую солидарную раскладку ущерба, а на ликвидность компании на данный конкретный момент. Применение этой конкретной модели корректно в условиях достаточно стабильного функционирования страховой компании. Надо отметить, что недопустимо осуществление выплат по ранее заключенным договорам за счет поступления премий по вновь заключенным, так как этот процесс фактически соответствует финансовой пирамиде. Поэтому применение неравенства Крамера–Лундберга имеет смысл при неухудшающемся финансовом положении компании. При этом следует четко различать разницу между вероятностью выполнения обязательств на момент завершения всех договоров портфеля и на момент предъявления любого требования о выплате из-за разных принципов, положенных в основу этих методов. Первый ориентирован на принцип замкнутого страхового фонда, второй — на вычисление текущей ликвидности компании.
На наш взгляд, недостатком рассмотренных выше моделей является то, что в качестве существенного и, по сути, единственного условия неразорения, отождествляемого с финансовой устойчивостью страховой организации, в них принимается достаточность суммы собранных за определенный период страховых премий и собственных средств для полного выполнения обязательств перед страхователями, т. е. для покрытия возмещений убытков по страховым событиям, произошедшим за этот период. Таким образом, из всей совокупности рисков, влияющих на деятельность страховой компании, рассматриваются и оцениваются только риски, принимаемые по различным договорам страхования, сострахования, перестрахования, т. е. чужие риски. Хотя очевидно, что для адекватной оценки и повышения уровня финансовой устойчивости страховщика необходим комплексный анализ всех видов рисков, оказывающих как негативное, так и позитивное влияние на его деятельность.
Следует отметить, что такие финансовые институты, как страховые организации, подвержены влиянию и негативному воздействию рисков фактически с двух сторон: с одной стороны, они принимают на себя чужие риски, которые им передаются по различным договорам страхования и перестрахования, а с другой — в процессе инвестиционной и иной деятельности у страховщика возникают его собственные финансовые риски, связанные с невозвратом вложенных средств или недополучением прибыли.
Таким образом, характерной особенностью страхового бизнеса является то, что, с одной стороны, страхование, как основной вид услуг страховой компании, выступает одним из методов управления риском, а с другой — страховая компания, как субъект рынка, сама потенциально подвержена целому ряду рисков.
Вообще, риски, возникающие в таких финансовых институтах, как страховые компании, учитывая их двустороннюю подверженность различным рискам (о чем было сказано выше), можно классифицировать следующим образом (рис. 3) [6, 7]:
— риски, связанные со страховой деятельностью, которые, в свою очередь, подразделяются на риски, принимаемые по договорам страхования, и риски, возникающие при обслуживании договоров;
— риски, не связанные со страховой деятельностью, которые, как правило, проявляются в рисках внешней рыночной среды, а именно природные, политические и экономические риски.
На наш взгляд, наибольшего эффекта в управлении рисками можно достичь, используя комплексный подход к их оценке и анализу, т. е. рассматривая различные группы рисков, возникающих в деятельности страховой организации (и изображенные на рис. 1), не абстрагированно друг от друга, а в совокупности, учитывая их взаимное влияние и динамику изменений.
Тогда совокупный размер риска, принимаемого по договорам страхования (абсолютный риск), будет вычисляться как сумма всех относительных рисков, связанных с обслуживанием договоров страхования, а также рисков внешней рыночной среды (риски внутренней рыночной среды не оказывают значительного влияния на деятельность страховой организации, поэтому ими в рамках предлагаемой методики оценки риска имеет смысл пренебречь), взвешенных с учетом влияния на оцениваемый абсолютный риск.
То есть если обозначить:
R 1 — абсолютный риск, принимаемый по договорам страхования;
R 2 — абсолютный риск, связанный с обслуживанием договоров;
R 3 — абсолютный риск внешней рыночной среды;
r 1 — относительный риск, принимаемый по договорам страхования;
r 2 — относительный риск, связанный с обслуживанием договоров, причем r 2 = a 1 · r 21 + a 2 · r 22 + a 3 · r 23 , где r 21 — риск андеррайтинга; r 22 — риск неэффективного перестрахования; r 23 — риск формирования страховых резервов; r 3 — относительный риск внешней рыночной среды, причем
r 3 = b 1 · r 31 + b 2 · r 32 + b 3 · r 33 , где r 31 — риск ликвидности; r 32 — процентный риск; r 33 — валютный риск;
то получим следующие формулы для вычисления абсолютных рисков:
R1 = c11 · r1 + c12 · r2 + c13 · r3,
R2 = c21 · r1 + c22 · r2 + c23 · r3,
R3 = c31 · r1 + c32 · r2 + c33 · r3.
Весовые коэффициенты a i , b i , c ij ( i , j = 1, 2, 3) определяются степенью влияния конкретных относительных рисков на вычисляемый абсолютный или относительный риски, т. е., например, c 12 — это численное выражение влияния относительного риска r 2 , связанного с обслуживанием договоров страхования, на величину абсолютного риска R 1 , принимаемого по договорам страхования; a 1 — численное выражение влияния относительного риска андеррайтинга на общее значение относительного риска, связанного с обслуживанием договоров страхования.