Реферат: Физический анализ магнитно-резонансных томографов
900
1400
84
84
1250
87
77
99
80
80
2. Уравнение Блоха
Уравнение Блоха является основой для анализа электромагнитных процессов, возникающих при ЯМР. Оно получено из феноменологических представлений (не физических) и хорошо описывает поведение макросистемы в магнитном поле. Это уравнение имеет вид
. (3)
Член отражает незатухающую прецессию (ротацию), где произведение пропорционально w, т.е. 1/t; векторная сумма - поперечная намагниченность; Т1 и Т2 - постоянные времени продольной и поперечной релаксаций. Форма второго и третьего слагаемых уравнения Блоха говорит о том, что процесс релаксации предполагается экспоненциальным. Это допущение справедливо для жидкостных сред (ликворов), однако является весьма приближенным для жиров, серого и белого вещества мозга и совсем далеко от истины для твердых образований, у которых Т1 и Т2 очень малы.
Положим, что Т1 и Т2 весьма велики. Тогда вторым и третьим членами в уравнении (3) можно пренебречь. Допустим также, что Н = Н0 и Н = kН0 . Тогда уравнение Блоха примет вид
. (4)
Начальные значения составляющих М обозначим как . Представим М в виде , где i, j, k – орты, и выполним перемножение векторов согласно правилу, которое записано в виде таблицы.
Сравнивая левые и правые части в (4), находим
. (5)
Решим систему (4.5), положив . Знак "минус" здесь необходим для правильного отражения действия градиентных полей, в чем убедимся далее. Дифференцируя первое уравнение системы (5), с учетом второго получаем
или .
Это уравнение незатухающих колебаний, решение которого с учетом начальных условий можно записать в виде
.
Полное решение системы (5) будет иметь вид
,
, (6)
.
При учете в уравнении Блоха членов, содержащих Т1 и Т2 первое и второе уравнения системы (6) следует умножить на exp(-t/T2 ), а третье уравнение примет вид
.