Реферат: Геометрическая теория строения материи
При стороне а = 11 получим :
V τ =3 458,04. (7)
Если сравнить полученную величину с общепринятой величиной массы Тау-мезона (в электронных массах) равной 3 477,50 то увидим, что погрешность определения массы в данном случае менее шести десятых процента, что также не может объясняться простым совпадением.
Логично предположить, что поскольку правильные многогранники исчерпаны, то другие элементарные частицы представляют собой иные многогранники.
Следующими рассмотрим полуправильные многогранники, представляющие собой правильные многогранники, симметрично усеченные.
Первым на такую операцию усечения объема рассмотрим тетраэдр.
Рисунок 3. Усеченный Тетраэдр
Объем такого тела будет определяться как разность объема исходного тетраэдра со стороной равной а, и объема четырех отсеченных тетраэдров со стороной b.
V = (√2)/12 * a3 - 4*(√ 2)/12 * b3 (8)
Безусловно, возможны много вариантов с различными значениями a и b.
Среди них мы отметим вариант, когда а = 14, b = 5, при этом V =264,48. По полученному результату, это - Пи-0 мезон. Его масса равна 264,15 е.м.
Следующим рассмотрим “усеченный куб” (Рис. 4)
Рисунок 4. Усеченный Куб
Его объем определится как объем исходного куба со стороной а, за минусом объема восьми отсеченных углов со стороной b. Заметим, что отсеченные углы составляют октаэдр со стороной b.
V = a3 - √2/3 b3. (9)
Приняв а = 6,5 b = 1,0, получим V =274,154. По полученному результату, это Пи+ /- мезон. Его масса равна 273,39 е.м.
Отметим, что оставшаяся часть ребра составляет 6,5- √2 ≈ 5.
Все массы частиц, о которых шла речь до сих пор – это так называемая масса покоя. Она вычислялась как функция от длины стороны. Отдельного разговора достойны четыре частицы, движущиеся со скоростью света, и масса которых определяется из классической формулы E = mc2. Это фотон и три вида нейтрино. Для этих частиц проведем обратное преобразование – получим длину стороны многогранника от известной массы. Массу фотона примем равной нулю, а за единицу примем длину грани Гексаэдра (Электрона). Тогда длина грани Электронного нейтрино будет равна 0,030744. Длина грани Мюонного нейтрино равна 0,53425016, а для Тау-нейтрино получим величину равной 3,43906451.
Сведем полученные результаты в таблицу. Причем в лептонах сгруппируем отдельно нейтрино и собственно лептоны.
Таблица 3. Сводная таблица Геометрии элементарных частиц
№ п\п | Вид частицы | Вид многогранника |
Длина Грани | Масса э.м. | Объем | Погрешность |
1 | γ | Тетраэдр | 0 | |||
Лептоны | ||||||
2 | ν e | Октаэдр | 0,030744 | < 7 *10-6 | ||
3 | ν μ | Икосаэдр | 0,53425 | <0.17 | ||
4 | ν τ | Гексагон | 11 | <18 | ||
5 | e - | Гексаэдр | 1 | 1 | 1 | 0 |
6 | μ - | Додекаэдр | 3 | 206.77 | 206.9 | 0.062 % |
7 | τ | Додекатетр | 11 * | 3 477.5 | 3 458.04 | 0.56 % |
Мезоны | ||||||
8 | π 0 | Тетр. Усечен. | 14 ** | 264.15 | 264.50 | 0.134 % |
9 | π+/ - | Куб Усечен. | 6,5 ** | 273.39 | 274.154 | 0.281 % |
* Длина ребер сходящихся к вершинам.
** Взята длина ребер неусеченных многогранников.
Многообразием усеченных правильных, полуправильных и неправильных многогранников можно объяснить и все многообразие видов элементарных частиц.