Реферат: Группы симметрий квадрата и куба

Для коммутативной группы коммутант тривиален, он состоит из единицы группы. Таким образом, коммутант в некотором смысле является "мерой некоммутативности" группы.

Вычислим коммутант группы симметрий квадрата (G2). Чтобы не перебирать все пары, пойдем по такому пути, который будет использован в дальнейшем при исследовании группы симметрий куба.

С квадратом ABCD жестко свяжем два вектора e1, e2 (рис. 4). При любом преобразовании квадрата пара векторов (e1, e2) займет новое положение, обозначим его символом: ( ei,  ej) (i, j = 1,2; i  j). Имеется всего восемь символов:

( e1,  e2); ( e2,  e1).

Каждому преобразованию квадрата отвечает свой символ. Пример: тождественному преобразованию e - (e1, e2), центральной симметрии z - (-e1, -e2), симметриям b, c - (e2, e1), (-e1, e2), повороту r - (e2, -e1).

Способ умножения символов покажем на примере.

(-e1, e2) (-e2, -e1).

В первом преобразовании e1  -e1. Во втором преобразовании e1  -e2, тогда -e1  e2. Аналогично e2  e2  -e1. Окончательно (-e1, e2) (-e2, -e1) = (e2, -e1).

(e2, e1) (e2, -e1).

В первом преобразовании e1  e2, а во втором преобразовании e2  -e1. Аналогично e2  e1  e2. Окончательно (e2, e1) (e2, -e1) = (-e1, e2).

Упражнение. Проверьте, что

1. ( e1,  e2) ( ,  ) = (  ,   ),

2. ( e2,  e1) ( ,  ) = (  ,   ),

где ( ,  ) - символ любого из восьми преобразований квадрата.

Из этих примеров следует, что при умножении четного числа преобразований ( e2,  e1) в произведении получается символ с натуральным порядком индексов векторов, а при нечетном - получается символ с обратным порядком векторов. Число минусов в результате будет иметь такую же четность, как сумма числа минусов всех сомножителей.

Упражнение. Проверьте, что

1. ( e1,  e2)-1 = ( e1,  e2),

2. ( 2e2,  1e1)-1 = ( 1e2,  2e1), где  i =  1.

Отсюда вывод, что символ обратного преобразования имеет то же число минусов, что и данное, и такую же последовательность индексов.

Вернемся к коммутатору [ab] = aba-1b-1. С учетом следствий, вытекающих из предыдущих упражнений, число символов вида ( e2,  e1) в коммутаторе всегда четно. Отсюда следует, что в символе коммутатора индексы векторов идут в натуральном порядке и имеется либо два минуса, либо ни одного. А это значит, что коммутаторами группы симметрий квадрата могут быть только

(e1, e2) и (-e1, -e2).

Например, в силу коммутативности произведения симметрий a, c (рис. 4) их коммутатор [ac] = e, то есть (e1, e2). Легко проверить, что [ab] = z (рис. 4), то есть (-e1, -e2).

Множество из коммутаторов { (e1, e2); (-e1, -e2) } уже образует группу, поэтому по определению оно является коммутантом группы симметрий G2. Коммутант от полученного коммутанта, в силу коммутативности группы есть единица e.

Группа, обладающая свойством, что последовательность ее коммутантов приводит к группе, состоящей из одной единицы, называется разрешимой.

Таким образом, группа симметрий квадрата разрешима.

Группа симметрий куба

Изучим теперь группу симметрий куба и выясним, разрешима она или нет?

Для этого используем символику, введенную в предыдущем параграфе. С кубом жестко свяжем три вектора e1, e2, e3 (рис. 5). При любом преобразовании куба тройка векторов (e1, e2, e3) займет новое положение ( ei,  ej,  ek) (i, j, k = 1, 2, 3; i j k, i k). Каждому преобразованию куба отвечает свой символ, верно и обратное. Одни из них будут обозначены символом, полученным перестановкой четного числа векторов (циклической).

Это: (e3, e1, e2) - соответствует повороту вокруг оси DB1 на 120о (рис. 6) (две перестановки: e2 с e3 и e3 с e1); (e2, e3, e1) - соответствует обратному повороту (на -120о) (две перестановки: e1 с e3 и e3 с e2); (e1, e2, e3) - тождественному преобразованию (нуль перестановок). Другие преобразования будут обозначены символом, полученным нечетным числом перестановок. Это символы, соответствующие плоскостным симметриям:

К-во Просмотров: 302
Бесплатно скачать Реферат: Группы симметрий квадрата и куба