Реферат: Группы симметрий квадрата и куба
= e,
то группа симметрий куба разрешима.
Аналогично тому, как от квадрата (двумерного куба) мы перешли к трехмерному кубу, можно от трехмерного куба перейти к четырехмерному и пятимерному. Представить эти фигуры трудно, но можно дать им следующее описание. Три взаимно-перпендикулярных вектора, отложенных от центра трехмерного куба, задают прямоугольную систему координат Oxyz (рис. 5) трехмерного пространства. Координаты восьми вершин куба в этой системе координат есть наборы троек чисел вида: ( 1, 1, 1). В четырехмерном пространстве система координат содержит четыре взаимно-перпендикулярных вектора (e1, e2, e3, e4). Тогда четырехмерный куб можно задать 16-ью вершинами с координатами ( 1, 1, 1, 1). Аналогично можно получить пятимерный куб. Тогда движения этих кубов можно также задать символами из четырех и пяти векторов:
( ei, ej, ek, et);
i, j, k, t = 1, 2, 3, 4;
i j k t; j t i k;
( ei, ej, ek, et, ep);
i, j, k, t, p = 1, 2, 3, 4, 5;
i j k t p; j t i k p; i p j.
Если рассмотреть группы симметрий четырехмерного куба (G4) и пятимерного куба (G5), то проводя аналогичные рассуждения, можно доказать, что группа G4 разрешима, а группа G5 - не разрешима.
Коммутаторами этих групп ( и ) по-прежнему будут преобразования, обозначенные четными символами с четным числом минусов. Так в входят преобразования, символы которых, без учета знаков получаются из (e1, e2, e3, e4):
1) если один вектор остается на месте, а три переставлены четное число раз; например, (e1, e4, e2, e3) или
2) путем перестановки векторов в двух парах, таких без учета знаков - три:
(e2, e1, e4, e3); (e3, e4, e1, e2); (e4, e3, e2, e1).
Например, символ (e2, e1, e4, e3) получится из (e1, e2, e3, e4), если переставить вектора в паре e1, e2 и в паре e3, e4. Если к последней строке добавить единицу (e1, e2, e3, e4), то опять будем иметь группу Клейна. Читатель может проверить, что коммутант группы состоит из элементов этой группы Клейна, взятых с четным числом минусов (нуль, два, четыре). Коммутант состоит из восьми элементов. Все они записываются символом с натуральным порядком векторов и имеют четное число минусов. Группа - коммутативная, поэтому ее коммутант состоит из одной единицы. Из чего следует, что группа симметрий четырехмерного куба разрешима.
Группа не разрешима, так как = = = ... e, так же как и группа для n>5.
Добавим, что проблема разрешимости группы связана с проблемой разрешимости алгебраического уравнения в радикалах. Так уравнения выше 4-ой степени не разрешимы в радикалах. Это означает, что существуют уравнения n-ой степени (n>4), корни которых нельзя выразить через коэффициенты этого уравнения с помощью алгебраических действий и извлечения корней n-ой степени.