Реферат: Ядерные силы
Ядро, состоящее из А нуклонов (A=Z+N), характеризуется оператором изотопического спина
являющимся вектором в изотопическом пространстве. Абсолютная величина Т этого вектора согласно закону сложения квантовых векторов может принимать значения 0, . . . , А/2. -компонента изотопического спина ядра равна
так как сумма всех протонов равна Z/2, а сумма нейтронов –N/2.
Абсолютная величина Т вектора изотопического спина не может быть меньше абсолютной величины проекции его на ось Ј, т. е. , и поэтому должно выполняться неравенство:
Это означает, что ядро может иметь равный нулю изотопический спин Т только в том случае, когда число протонов Z равно числу нейтронов N. Изотопический спин ядра может быть равен единице, либо когда число протонов равно числу нейтронов, либо когда число протонов отличается от числа нейтронов на единицу.
Изотопический спин системы, состоящей из двух нуклонов, может быть равен либо единице, либо нулю. Если Т=1, то может принимать три значения: -1, 0, +1. Значению Т= - 1 соответствует система, состоящая из двух нейтронов (каждому, нейтрону соответствует ); значению Т=0 соответствует система, состоящая из протона и нейтрона (заряд равен +1). При Г=1 заряд системы равен +2, т. е. система состоит из двух протонов. Итак, изотопическому спину Г= 1 соответствует изобарный триплет n – n, n – р, р – р. Все. компоненты этого триплета, состояния которых удовлетворяют принципу Паули ) , имеют одинаковые спины, четности и одинаковую внутреннюю структуру.
Таким образом, при T=1 возможны только такие состояния системы n – р, которые могут иметь место для систем, состоящих из двух протонов или двух нейтронов: 'S0, (3Po, 3P, 3P) , т. е. только четные синглеты и нечетные триплеты. При T=0 существует только одно значение -компоненты изотопического спина: T. Этому состоянию системы двух нуклонов соответствуют симметричные волновые функции , т. е. четные триплеты и нечетные синглеты.
Приведенная классификация состояний дает возможность более четко сформулировать сущность зарядовой независимости, т. е. изотопической инвариантности ядерных сил, для системы, состоящей из двух нуклонов: ядерное взаимодействие любой пары нуклонов в состояниях с Т= 1 одинаково.
Гипотеза изотопической инвариантности ядерных сил основана на предположении, что в изотопическом пространстве отсутствуют физически выделенные направления: трехмерное изотопическое пространство изотропно.
Представление об изотопической инвариантности легко может быть обобщено на случай более сложных систем, состоящих из Z протонов и N нейтронов. В случае строгого выполнения изотопической инвариантности гамильтониан системы не должен меняться при замене любого протона на нейтрон и наоборот. Все состояния системы, в которой произведена такая замена, должны совпадать с состояниями первоначальной системы, если только они не запрещены принципом Паули .
Замена протона нейтроном означает уменьшение Т на единицу, т. е. поворот вектора Т в изотопическом пространстве. Если в результате такой замены гамильтониан не изменится, то он инвариантен относительно вращения в изотопическом пространстве. Изотопический спин системы в этом приближении является интегралом движения, т. е. он сохраняется. Каждому состоянию системы соответствует определенный изотопический спин Т, зависящий от изотопических спинов всех частиц, образующих систему, и от их ориентации в изотопическом пространстве.
В действительности протоны по своим свойствам (по массе, электрическому заряду, магнитному моменту) несколько отличаются от нейтронов, поэтому замена протона нейтроном и наоборот должна приводить к изменению гамильтониана системы. Это означает, что изотопический спин Т не является точным «квантовым числом. Вследствие кулоновского взаимодействия в гамильтониан должны войти члены, не инвариантные относительно вращений в изотопическом пространстве. Однако в легких ядрах, содержащих небольшое число протонов, кулоновское взаимодействие значительно слабее ядерного, благодаря чему зарядово-неинвариантные члены гамильтониана можно рассматривать как малое возмущение. Такое возмущение приводит к тому, что состояние системы может являться смесью состояний с различными значениями изотопического спина. При очень малых зарядово-неинвариантных членах состояние системы можно характеризовать изотопическим спином, играющим роль неточного квантового числа. Из анализа экспериментальных данных следует, что для невозбужденных состояний ядер изотопический спин имеет смысл квантового числа вплоть до Z20. Легкие ядра можно разбить на две группы: ядра с целым и полуцелым изотопическим спином Т (т. е. ядра соответственно с четными и нечетными A). Каждому значению Т соответствует 2Т+1 возможных значений проекции изотопического спина Т, образующих изотопический мультиплет. Целочисленному изотопическому спину Т соответствует нечетное, а полуцелому — четное число компонент мультиплета.
С увеличением Г энергетическая устойчивость ядер уменьшается, поэтому основным состояниям ядер соответствуют малые значения изотопического спина: Т=0, 1/2 и 1. В зависимости от значения изотопического спина системы можно говорить об изобарных синглетах (Т = 0), дублетах (Т=1/2) и триплетах (Т=1). К изобарным синглетам относятся такие ядра, как 2Не4 и Н2. Это можно обосновать следующим образом. Ядру 2Не4, состоящему из четырех нуклонов, соответствует компонента T =0. Следовательно, у 2Не4 изотопический спин Т может быть равен 0, 1 или 2. Если бы изотопический спин 2Не4 был равен 1 или 2, то существовали бы такие ядра, как 4Н4 и 4Ве4, причем их энергии связи, согласно гипотезе изотопической инвариантности, незначительно отличались бы от энергии связи 2Не4. Такие ядра, однако, не существуют, и это свидетельствует о том, что изотопический спин 2Не4 равен нулю. Можно показать, что равен нулю изотопический спин дейтрона, 3Li6, 5В10, 6С12, 7N14, 8О16.
Зеркальные ядра 1H3 и 2Не3 можно рассматривать как ядра, образующие изобарный дублет. Для этих ядер изотопический спин может принимать значения 1/2 или 3/2, так как Т = ±1/2. Однако значение Т=3/2 должно быть отброшено, поскольку при Т=3/2 существовали бы устойчивые системы из трех протонов или трех нейтронов. Оказывается, что для основных состояний всех ядер с нечетным А вплоть до 17Cl33 T=1/2.
Такие ядра, как 4Ве10, 5В10, 6С10, образуют изотопический триплет, соответствующий трем возможным значениям проекции изотопического спина Т=1, причем ядру 4Ве10. соответствует Т= – 1, 5В10 — Т = 0 и 6С10 – Г = + 1.
Протон и нейтрон можно рассматривать как частицы, образующие нуклонный дублет. Изотопический спин t нуклона равен 1/2, причем протонному состоянию соответствует компонента Т = +1/2, а нейтронному Т = — 1/2 Это позволяет выразить заряд Z нуклона (Z равен единице для протона и нулю для нейтрона) через -компоненту изотопического спина:
Эта формула может быть обобщена на случай, когда система состоит из нескольких нуклонов, получим:
Таким образом, заряд ядра выражается через Т и число нуклонов, входящих в состав ядра.
Обменные силы
Явление насыщения и короткодействующий характер ядерных сил впервые были объяснены на основе предположения об обменном характере ядерных сил, т. е. что эти силы возникают между двумя частицами благодаря обмену третьей частицей. Такой частицей в случае взаимодействия нуклонов является, по-видимому, мезон. Если состояние двух взаимодействующих нуклонов зависит от их пространственных r1, r2 и спиновых s1, s2 координат, то подобный обмен может осуществляться тремя различными способами.
1) Нуклоны могут обмениваться пространственными координатами, сохраняя неизменными спиновые переменные. Эта возможность была рассмотрена Майорана. Силы, возникающие при таком взаимодействии, получили название сил Майорана.
2) Возможен обмен нуклонов спиновыми переменными при неизменных пространственных координатах. Этот вариант был рассмотрен Бартлеттом. Силы взаимодействия нуклонов при таком обмене получили название сил Бартлетта.
3) Возможен одновременный обмен спиновыми и пространственными координатами. Возникающие при этом обменные силы известны под названием сил Гейзенберга.
Формальное описание обменного взаимодействия осуществляется путем введения в гамильтониан системы таких операторов, которые, действуя на волновую функцию, вызывают перестановку координат или перестановку спинов, либо и тех и других одновременно в зависимости от характера обменных сил.
В случае обменных сил Майорана оператор энергии взаимодействия может быть представлен в виде произведения V(r)PM, где V(r) — функция, зависящая от расстояния между нуклонами, а Pm — оператор, меняющий местами пространственные координаты, входящие в волновую функцию: