Реферат: Ідеальна оптична система
Точки предмета і зображення, що лежать на оптичній осі, для яких g = +1. називаються вузловими точками оптичної системи. З формули (15) видно, що вузлові точки збігаються з головними (b = +1) у тому випадку, якщо оптична система знаходиться в однорідному середовищі. У цьому випадку сполучені промені, що проходять крізь головні точки Н і Н', рівнобіжні один одному.
Подовжнім збільшенням a оптичною системою називають відношення розміру зображення нескінченно малого відрізка, розташованого уздовж оптичної осі, до розміру цього відрізка:
a = dz'¤dz.
Продиференціюємо формулу Ньютона (3) по zі z'. Після множення і розподілу знайденого вираження на ff' і заміни відносин z'/f' і f/z через b одержимо, що
а = -(f'/f) b2 . (16)
На підставі виразів (15) і (16) можна записати:
gb = -f/f; (17)
ga = b. (18)
Рівняння (18) установлює зв'язок між трьома збільшеннями b, g і a . При f' = -f
gb = 1; (19)
a = b2 .(20)
3. Побудова і розрахунок ходу променів крізь ідеальну оптичну систему
У практичній роботі конструкторів оптичних приладів досить широко використовуються властивості кардинальних елементів і основні математичні залежності ідеальної оптичної системи. Графічне розв’язання задач дозволяє найбільш наочно знайти оптимальний варіант. Чотири способи побудови ходу променів крізь позитивну і негативну оптичні системи зображено на рис. 8. Побудови виконані з припущень, що оптична система розташована в однорідному середовищі, тобто n= n', f = -f, а отже, вузлові N, N' і головні Н, Н' точки збігаються. Дамо деякі пояснення до рис. 8. Точки, загальні для заданого і допоміжного променів у передній фокальній площині, умовно позначені буквою C, а точки, загальні для тих же променів у задній фокальній площині, позначені відповідно через С'. Промені, що виходять із точок C, після проходження системи будуть рівнобіжними між собою. Якщо головні площини зливаються (система тонка), то побудови будуть простіші.
Рисунок 7- Чотири способи побудування ходу променів крізь розташовану в однорідному середовищі оптичної системи
Часто оптичні системи складаються з великого числа окремих компонентів, що вилучений один від одного на значні відстані. У цьому випадку багато задач геометричної оптики зручніше розв’язувати шляхом розрахунку ходу променів. Наприклад, у центрованих оптичних системах положення зображення предмета, перпендикулярного до оптичної осі, можна визначити шляхом розрахунку променя, що проходить крізь вісьову точку А цей предмет. Положення променя, що виходить із точки А і падаючого на висоті h на оптичну систему (див. рис. 6), визначається кутом а з оптичною віссю. Знайдемо кут а'. Згідно з рис. 6 маємо
а = h/tg s іа' = h/tg s'.
Поставивши а й а' у формулу відрізків (4), після перетворення одержимо
tg s' = (-f/f¢) tg s + hФ/n',
де Ф = n'/f' називають оптичною силою системи.
Останню формулу називають формулою кутів. У загальному вигляді для системи з декількох компонентів вона має такий вигляд:
tg sk+1 = (-fk /f'k ) tg sk + hk Ф/nk +1 . (21)
У формулі (21) відношення -fk ¢ /f¢ можна замінити відношенням показників переломлення, тоді
tg sk+1 = tg s + hk Фk /nk+1 (22)
Якщо оптична система знаходиться в повітрі, то з (22) випливає, що
tg sk+1 = tg sk + hk Фk . (23)
Висоти h падіння променів на компоненти залежать від кутів, а також від відстаней між цими компонентами:
hk+1 = hk – dk tg sk+1 . (24)
Рівняння (24) називають формулою висот. Послідовно застосовуючи формули кутів і висот, можна розрахувати хід променів крізь ідеальну оптичну систему будь-якої складності.