Реферат: Ідеальна оптична система
Якщо в розглянутій системі компонента стикаються (d1 = d2 = 0), то оптична сила
Ф = Ф1 + Ф2 + Фз ,
а відрізок а¢F ¢ дорівнює еквівалентній фокусній відстані системи f'.
Знайти параметри еквівалентної системи можна графічно шляхом побудови ходу променя, рівнобіжного оптичній осі, у прямому і зворотному напрямках.
5. Параксіальна область оптичної системи. Параксіальні і нульові промені
Реальні оптичні системи, що складаються зі сферичних і плоских заломлюючих і поверхонь, що відбивають, у загальному випадку не дають стигматичних зображень, тобто не задовольняють положенням ідеальної оптичної системи, Замість точкових зображень виходять кола розсіювання, Гомоцентричність пучка променів зберігається тільки за умови, що кути s і e, утворені реальними променями з оптичною віссю і з нормаллю до поверхні, нескінченно малі. При нескінченно малих кутах s, e, а отже, і s', e' справедливі такі вирази:
sin s/sin s' »s/s' = s'/s » const; (30)
для сферичної заломлюючої поверхні
n'/s' - n/s = (n' - n)/r: (31)
для плоскої заломлюючої поверхні
n'/s' - n/s = 0;(32)
для сферичної поверхні, що відбиває
l/s' + 1/s = 2/r. (33)
У виразах (30)-(33) відрізки s і s' визначають відповідно положення осьової предметної точки і її зображення щодо поверхні. Як видно з (30)-(33), відрізок s' залишається постійним для заданого відрізка s, тобто всі промені, що виходять із предметної точки під будь-якими, але малими кутами, після переломлення перетинаються в одній точці - точці зображення. Промені, що утворять малі кути s і s' з оптичною віссю і малі кути e й e' з нормаллю до заломлюючої поверхні, називають параксіальними променями, а область біля осі, усередині якої поширюються ці промені, - параксіальною областю. Кути s і s' для параксіальної області позначають a і a'. Співвідношення (31)-(38) називають рівняннями параксіальних променів і використовують для розрахунку ходу променів.
Для зручності виконання розрахунків вводиться поняття нульових променів. Нульовим променем називають фіктивний промінь, що переломлюється (віддзеркалюваний) так само, як і параксіальний, на поверхнях, але зустрічається з ними на кінцевих відстанях від оптичної осі і відтинає на оптичній осі ті ж відрізки, що і параксіальний промінь.
Шляхом розрахунку ходу нульового променя через оптичну систему визначають фокусні відстані і фокальні відрізки, а також положення зображення і лінійне збільшення системи для випадку, коли предмет знаходиться на кінцевій відстані.
Формули для розрахунку ходу нульового променя:
; (34)
1 hk +1 = hk – dk tgsk + .1
З виразу (34) одержимо формулу радіуса:
яку використовують для обчислення радіусів поверхонь при заданому ході променя. Для спрощення написання у формулах (34), (35) tg s рекомендується заміняти s.
6. Положення головних площин. Фокусні відстані заломлюючої поверхні в параксіальній області
У параксіальній області для реальних центрованих оптичних систем справедливі усі формули і положення ідеальної оптичної системи. Представимо малий предмет як би накладеним на поверхню в її вершини. Очевидно, що зображення цього предмета по положенню і розміру збігається із самим предметом. Отже, у вершині поверхні О (рис. 10) знаходиться сполучена пара сполучених точок, лінійне збільшення в який дорівнює одиниці, тобто, тут знаходяться співпадаючі головні точки заломлюючої поверхні. Головні площини збігаються і лежать у площині, дотичної до сфери в точці 0. Якщо предметну точку А переміщати уздовж оптичної осі так, щоб вона вилучилася в нескінченність, то точка А' збігається з заднім фокусом F' заломлюючої поверхні, тобто
s = -¥; s' = f'. (36)
Підставивши (36) у (31) і розв’язавши отриманий вираз відносно f', одержимо формулу для визначення задньої фокусної відстані заломлюючої поверхні:
f' = n'r/(n' - n). (37)
Рисунок 9- Схема для знаходження фокусних відстаней сферичної поверхні радіусом r