Реферат: Имитационное моделирование

5. Формализованным образом задаются необходимые феноменологические свойства системы и отдельных ее частей.

6. Случайным параметрам, фигурирующим в модели, сопоставляются некоторые их реализации, сохраняющиеся постоянными в течение одного или нескольких тактов системного времени. Далее отыскиваются новые реализации.

Имитационное моделирование воспроизводственных процессов в нефтегазовой промыш­ ленности.

Современный этап развития нефтяной и газовой промышленности характеризуется ус­ложнением связей и взаимодействия природных, экономических, организационных, экологиче­ских и прочих факторов производства как на уровне отдельных предприятий и нефтегазодобывающих районов, так и на общеотраслевом уровне. В нефтегазовой промышленности производ­ство отличается длительными сроками, эшелонированием производственно - технологического процесса во времени (поиски и разведка, разработка и обустройство, добыча нефти, газа и кон­денсата), наличием лаговых смещений и запаздываний, динамичностью используемых ресурсов и другими факторами, значения многих из которых носят вероятностный характер.

Значения этих факторов систематически изменяются вследствие ввода в эксплуатацию но­вых месторождений, а также не подтверждения ожидаемых результатов по находящимся в раз­работке. Это вынуждает предприятия нефтегазовой промышленности периодически пересмат­ривать планы воспроизводства основных фондов и перераспределять ресурсы с целью оптими­зации результатов производственно - хозяйственной деятельности. При составлении планов существенную помощь лицам, готовящим проект хозяйственного решения, может оказать ис­пользование методов математического моделирования, в том числе имитационных. Суть этих методов заключается в многократном воспроизводстве вариантов плановых решений с после­дующим анализом и выбором наиболее рационального из них по установленной системе крите­риев. С помощью имитационной модели можно создать единую структурную схему, интегри­рующую функциональные элементы управления (стратегическое, тактическое и оперативное планирование) по основным производственным процессам отрасли (поиски, разведка, разра­ботка, добыча, транспорт, нефтегазопереработка).

Метод Монте-Карло как разновидность имитационного моделирования.

Датой рож­дения метода Монте-Карло принято считать 1949 г., когда появилась статья под названием «The Monte Carlo method». Создателями этого метода считают амери­канских математиков Дж. Неймана и С. Улама. В СССР первые статьи о методе Монте-Карло были опублико­ваны в 1955—1956гг.

Любопытно, что теоретическая основа метода была известна давно. Более того, некоторые задачи стати­стики рассчитывались иногда с помощью случайных вы­борок, т. е. фактически методом Монте-Карло. Однако до появления электронных вычислительных машин (ЭВМ) этот метод не мог найти сколько-нибудь широкого применения, ибо моделировать случайные величины' вручную—очень трудоемкая работа. Таким образом, возникновение метода Монте-Карло как весьма универ­сального численного метода стало возможным только благодаря появлению ЭВМ.

Само название «Монте-Карло» происходит от города Монте-Карло в княжестве Монако, знаменитого своим игорным домом.

Идея метода чрезвычайно проста и состоит она в следующем. Вместо того, чтобы описывать процесс с помощью аналитического аппарата (дифференциальных или алгебраических уравнений), производится «розыгрыш» случайного явления с помощью специально организованной процедуры, включающей в себя случайность и дающей случайный результат. В действительности конкретное осуществление случайного процесса складывается каждый раз по-иному; так же и в результате статистического моделирования мы получаем каждый раз новую, отличную от других реализацию исследуемого процесса. Что она может нам дать? Сама по себе ничего, так же как, скажем, один случай излечения больного с помощью какого-либо лекарства. Другое дело, если таких реализаций получено много. Это множество реализаций можно использовать как некий искусственно полученный статистический материал, который может быть обработан обычными методами математической статистики. После такой обработки могут быть получены любые интересующие нас характеристики: вероятности событий, математические ожидания и дисперсии случайных величин и т. д. При моделировании случайных явлений методом Монте-Карло мы пользуемся самой случайностью как аппаратом исследования, заставляем ее «работать на нас».

Нередко такой прием оказывается проще, чем по­пытки построить аналитическую модель. Для сложных операций, в которых участвует большое число элемен­тов (машин, людей, организаций, подсобных средств), в которых случайные факторы сложно переплетены, где процесс — явно немарковскпй, метод статистиче­ского моделирования, как правило, оказывается проще аналитического (а нередко бывает и единственно воз­можным).

В сущности, методом Монте-Карло может быть ре­шена любая вероятностная задача, но оправданным он становится только тогда, когда процедура розыгрыша проще, а не сложнее аналитического расчета. Приведем пример, когда метод Монте-Карло возможен, но край­не неразумен. Пусть, например, по какой-то цели производится три независимых выстрела, из которых каж­дый попадает в цель с вероятностью 1/2. Требуется найти вероятность хотя бы одного попадания. Элементарный расчет дает нам вероятность хотя бы одного попадания равной 1 — (1/2)3 = 7/8. Ту же задачу можно решить и «розыгрышем», статистическим моделированием. Вместо «трех выстрелов» будем бросать «три монеты», считая, скажем, герб—за попадание, решку — за «промах». Опыт считается «удачным», если хотя бы на одной из монет выпадет герб. Произведем очень-очень много опытов, подсчитаем общее количество «удач» и разделим на число N произведенных опытов. Таким образом, мы получим частоту события, а она при большом числе опытов близка к вероятности. Ну, что же? Применить такой прием мог бы разве человек, вовсе не знающий теории вероятностей, тем не менее, в принципе, он возможен.

Метод Монте-Карло- это численный метод решения математических задач при помощи моделирования случайных величин.

Рассмотрим простой пример иллюстрирующий метод (Приложение 1).

Пример 1. Предположим, что нам нужно вычислить площадь плоской фигуры S. Это может быть произвольная фигура с криволинейной границей,

заданная графически или аналитически, связная или состоящая из нескольких кусков. Пусть это будет фигура изображенная на рис. 1, и

предположим, что она вся расположена внутри единичного квадрата.

Выберем внутри квадрата N случайных точек. Обозначим через F число

точек, попавших при этом внутрь S. Геометрически очевидно, что площадь

S приближенно равна отношению F/N. Чем больше N, тем больше точность

этой оценки.

Две особенности метода Монте-Карло.

Первая особенность метода - простая структура вычислительного алгоритма.

Вторая осо­ бенность метода - погрешность вычислений, как правило, пропорциональна D/N2, где D - неко­торая постоянная, N - число испытаний. Отсюда видно, что для того, чтобы уменьшить по­грешность в 10 раз (иначе говоря, чтобы получить в ответе еще один верный десятичный знак), нужно увеличить N (т. е. объем работы) в 100 раз.

Ясно, что добиться высокой точности таким путем невозможно. Поэтому обычно говорят, что метод Монте-Карло особенно эффективен при решении тех задач, в которых результат ну­жен с небольшой точностью (5-10%). Способ применения метода Монте-Карло по идее доволь­но прост. Чтобы получить искусственную случайную выборку из совокупности величин, опи­сываемой некоторой функцией распределения вероятностей, следует:

1. Построить график или таблицу интегральной функции распределения на основе ряда чи­сел, отражающего исследуемый процесс (а не на основе ряда случайных чисел), причем значе­ния случайной переменной процесса откладываются по оси абсцисс (х), а значения вероятности (от 0 до 1) - по оси ординат (у).

К-во Просмотров: 941
Бесплатно скачать Реферат: Имитационное моделирование