Реферат: Имитационное моделирование

т. е. при­близительно 1,047 млрд. баррелей нефти (165 млн. м3 , 141 млн.т).

Более распространенный способ: метод Монте-Карло.

Прежде всего, необходимо построить гистограммы и кривые накопленной вероятности для каждого параметра.

Для каждой из этих кривых случайным образом необходимо выбрать точку, соответст­вующую вероятности от 0 до 100 %. После этого надо подставить значение параметра, соответ­ствующее этой вероятности в уравнение. Затем можно подсчитать геологические запасы при этих значениях параметров и вычислить полную вероятность

Например , случайным образом выберем из рис 1,2,3,4-

- для 50%-ой накопленной вероятности имеем 25%-ю вероятность того, что объем пород соста­вит 690000 акрофутов

- для 20%-ой накопленной вероятности имеем 35%-ю вероятность того, что пористость соста­вит 21%

- для 25%-ой накопленной вероятности имеем 25%-ю вероятность того, что водосодержание равно 33%

- 80%-я накопленная вероятность показывает 32%-ю вероятность того, что эффективная мощ­ность составит 74%.

- коэффициент приведения нефти к поверхностным условиям принимаем равным 1,02.

Используя эти значения, вычислим геологические запасы:

(0,69 х 1 0) х (2 1 %) х (l - 33%) х (74%) х —— решив, получим приблизительно :

521 млн. баррелей нефти (82 млн.м3 , 70 млн.т ). Результат этого вычисления значительно мень­ше, чем при использовании средних значений параметров. Нам нужно узнать вероятность этого результата. Для определения вероятности того, что геологические запасы составят 521 млн. баррелей нефти, вычислим полную вероятность:

0,25 х 0,35 х 0,20 х 0,35 х 1,0 = 0,006125 ,т.е. вероятность равна 0.6125% - не очень хорошая!

Эта процедура повторяется многократно, для чего мы использовали программу, состав­ленную для ЭВМ. Это дает нам разумное вероятностное распределение геологических запасов. В результате выполнения программы прогнозировали объем геологических запасов нефти: наиболее вероятно, что объем нефти составит 84658 акрофутов или около 88,5 млн.тонн.

Использование распределения накопленной вероятности.

На следующем этапе , используя график, необходимо выбрать несколько оценок вместе с их вероятностями. Для каждого из этих значений вычисляются: динамика добычи, варианты проекта разработки. Эти расчеты могут затем использоваться для оценки капитальных эксплуатационных затрат для каждого значения запасов, выбранных из графика. Затем для каждого значения запасов анализируются экономические показатели. По прошествии некоторого време­ни, и после того, как будет пробурено некоторое количество скважин, рассчитывается коэффи­циент успешности по формуле.

Коэффициент успешности = кол-во скважин давш. нефть\ кол-во пробур. скважин

За период в течение нескольких лет составляется график вероятности достижения успеха. Например, для условной площади, график коэффициента успешности составлен по прошествии девяти лет эксплуатации. Через соответствующие значения успешности проводятся условные линии, затем через их центры проводится огибающая кривая. Крайние точки этих линий соот­ветствует максимальному уровню успешности, а центральная кривая соответствует наиболее вероятному уровню достижения успеха Значения вероятностей определяется на основе субъек­тивных суждений промысловых геологов.

Аналогично определяется уровень запасов на одну скважину. С помощью коэффициента успешности и средних запасов на одну скважину оценивается вероятность достижения опреде­ленного уровня запасов, необходимая для составления программы бурения и определения ко­личества необходимых скважин.

Вывод.

Основным недостатком аналитических моделей является то, что они неизбежно требуют каких-то допущений, в частности, о «марковости» процесса. Приемлемость этих допущений далеко не всегда может быть оценена без контрольных расчетов, а производят­ся они методом Монте-Карло. Образно говоря, метод Монте-Карло в задачах исследования операций играет роль своеобразного ОТК. Статистические модели не требуют серьезных допущений и упрощений. В прин­ципе, в статистическую модель «лезет» что угодно — любые законы распределения, любая сложность системы, множественность ее состояний. Главный же недостаток статистических моделей — их громоздкость и трудоем­кость. Огромное число реализации, необходимое для нахождения искомых параметров с приемлемой точ­ностью, требует большого расхода машинного време­ни. Кроме того, результаты статистического моделиро­вания гораздо труднее осмыслить, чем расчеты по аналитическим моделям, и соответственно труднее оп­тимизировать решение (его приходится «нащупывать» вслепую). Правильное сочетание аналитических и ста­тистических методов в исследовании операций — дело искусства, чутья и опыта исследователя. Нередко ана­литическими методами удается описать какие-то «под­системы», выделяемые в большой системе, а затем из таких моделей, как из «кирпичиков», строить здание большой, сложной модели.

Список используемой литературы:

1. Вентцель Е.С. «Исследование операций», Москва «Советское радио»

1972 г.

2. Соболь И.М. «Метод Монте-Карло», Москва «Наука»,1985 г.

3. «Экономико-математические методы и прикладные модели»,

К-во Просмотров: 971
Бесплатно скачать Реферат: Имитационное моделирование