Реферат: Інтегральні характеристики векторних полів

Нехай – соленоїдальне поле. Розглянемо відрізок «векторної трубки», тобто область, обмежену двома перерізами і та боковою поверхнею , яка складається із векторних ліній (рис. 1). Застосуємо до такої області формулу Остроградського-Гаусса (8). Оскільки в соленоїдальному полі , то потік векторного поля через поверхню області дорівнює нулю: ( – одиничний вектор зовнішньої нормалі). На боковій поверхні маємо , тому .

Отже,

.

Рисунок 1 – Відрізок «векторної трубки»

Змінимо на перерізі напрям нормалі на протилежний ( – внутрішня нормаль до ). Тоді отримаємо


,

де обидва потоки через перерізи і обчислюються в напрямі векторних ліній.

Таким чином, у соленоїдальному (трубчастому) векторному полі потік через будь-який переріз векторної трубки набуває одного й того самого значення. Це і є закон збереження інтенсивності збереження векторної трубки.

5. Інваріантне означення дивергенції

Нехай в області , обмеженій поверхнею , визначено векторне поле . Запишемо формулу (8) для векторного поля в області . Застосовуючи до лівої частини цієї формули теорему про середнє, отримаємо

або

,

де – об’єм області , а – деяка точка області .

Зафіксуємо точку і стягуватимемо область до точки так, щоб залишалася внутрішньою точкою області . Тоді , а прямуватиме до . Внаслідок неперервності значення прямуватиме до . Таким чином, отримуємо

. (9)

У праву частину формули (9) входять величини, інваріантні відносно вибору системи координат (потік векторного поля через поверхню і об’єм області). Тому формула (9) дає інваріантне означення дивергенції векторного поля. Отже, дивергенція векторного поля залежить тільки від самого поля і не залежить від вибору системи координат.

6. Циркуляція векторного поля

Розглянемо векторне поле , визначене в просторовій області , і деяку кусково-гладку криву , на якій вказано напрям обходу (вибір напряму обходу називають також орієнтацією кривої). Нехай – одиничний дотичний вектор до кривої у точці , напрямлений в сторону обходу кривої.

Криволінійний інтеграл

(10)

називається циркуляцією векторного поля вздовж кривої у заданому напрямі.

Якщо взяти інший напрям обходу кривої (змінити орієнтацію), то вектор змінить напрям на протилежний, тому скалярний добуток , а, отже, і циркуляція (криволінійний інтеграл (10)) змінить знак.

Якщо – силове векторне поле, тобто – вектор сили, то циркуляція визначає роботу силового векторного поля вздовж кривої в заданому напрямі.

Якщо в прямокутній системі координат , а , то вираз (10) для циркуляції векторного поля можна записати в вигляді

. (11)

Кожний доданок у правій частині (11) залежить від вибору системи координат, проте їхня сума, тобто циркуляція , очевидно, не залежить від вибору системи координат.

Якщо ввести вектор , то циркуляцію можна записати у вигляді (порівняйте з правою частиною рівності (11)).

К-во Просмотров: 172
Бесплатно скачать Реферат: Інтегральні характеристики векторних полів