Реферат: Інтегральні характеристики векторних полів
Нехай в області визначено векторне поле
;
– замкнений контур, який лежить в області
;
– довільна поверхня, межею якої є контур
;
(«поверхня
натягнута на контур
»);
– одиничний вектор нормалі на обраній стороні поверхні
.
Нехай функції та їхні частинні похідні першого порядку неперервні на поверхні
. Тоді справедлива формула Стокса
,
де орієнтація контуру узгоджена з орієнтацією поверхні
. Ліва частина формули Стокса є циркуляцією векторного поля
вздовж контура
, а права частина визначає потік через поверхню
векторного поля з координатами
, тобто потік
через поверхню
. Тому формулу Стокса можна записати у векторній формі:
(12)
або
. (13)
Фізичний зміст формули Стокса: циркуляція векторного поля вздовж замкненого контуру дорівнює потоку ротора векторного поля
через поверхню, натягнуту на цей контур.
8. Властивості потенціального поля
Як відомо, векторне поле , яке задовольняє в області
умову
, називається потенціальним у цій області (
– скалярний потенціал поля
). Якщо поле
потенціальне в області
, то
і вираз
є повним диференціалом функції
в області
. Це означає, що виконана умова незалежності криволінійного інтеграла від шляху інтегрування в просторі.
Таким чином, потенціальне в області поле має такі властивості.
1. Циркуляція потенціального поля вздовж довільного замкненого контуру
дорівнює нулю:
.
2. Для довільних точок і
області
циркуляція потенціального поля
вздовж кривої
не залежить від вибору кривої
і дорівнює різниці значень потенціала
в точках
і
:
.
У випадку силового потенціального поля ця властивість означає, що робота такого поля вздовж кривої не залежить від вибору кривої, а залежить тільки від початкової і кінцевої точок
і
.
3. Потенціальне поле є безвихровим, тобто
.
Нехай тепер дано векторне поле , яке задовольняє в області
умову
. Чи випливає звідси, що поле
є потенціальним в області
? Відповідь на це запитання залежить від форми області
. Якщо область
є поверхнево однозв’язною, то із умови
випливає, що існує функція
така, що
.
Отже, , тобто поле
є потенціальним в області
.
Таким чином, умова є необхідною і достатньою умовою потенціальності поля
у поверхнево однозв’язній області.
Потенціал потенціального поля
у поверхнево однозв’язній області можна обчислити за формулою:
. (14)
Якщо область не є поверхнево однозв’язною, то умова
не є достатньою для потенціальності поля
в області
.
9. Інваріантне означення ротора
Нехай в області визначено векторне поле
. Зафіксуємо точку
і деяку площину, яка проходить через цю точку. Нехай
– одиничний вектор нормалі до площини,
– замкнений контур, який лежить в площині і обмежує область
таку, що
– внутрішня точка області
. Запишемо формулу (12) для векторного поля
в області
. Застосовуючи до правої частини цієї формули теорему про середнє, отримуємо
,
диференціальне векторне поле формула соленоїдальне