Реферат: Інтегрування і пониження порядку деяких диференціальних рівнянь з вищими похідними

Знайшовши з нього

ми остаточно переходимо до ДР вигляду (4.38).

(4.58)

Припустимо, що ДР (4.55) не можна розвязати відносно але для нього можлива параметризація

Запишемо співвідношення

Домножимо першу рівність на :

Звідки.

Отже маємо

Прийшовши до отсанньої рівності ми отримаємо а)

3. Пониження порядку ДР які не містять незалежної змінної.

Ці ДР мають вигляд (4.59)

і його можна понизити на один порядок заміною

При цьому стане незалежною зміною, а - функцією

Обчислюємо

…..

і остаточно прийдемо до ДР порядку

Якщо - розвязок ДР (4.60) то

Інтегруємо ДР (4.61) і знайдемо загальний інтеграл.

Особливі зорвязки можуть появлятися при інтегруванні ДР (4.61). При переході до ДР (4.60) ми можимо загубити розвязки .

Для їх знаходження необхідно розвявати р-ня .

Якщо - розвязок однорідного р-ня, то - розвязок ДР (4.59)

Пр. 4.6 Розвязати р-ня

Вводимо змінну , ,

,

звідки , отже, ,

-загальний інтергал рівняння.

4. Однорідні ДР відносно шуканої ф-ї та її похідних.

Так називаються ДР вигляду в якому являється однорідною ф-єю відносно , тобто маємо

Шляхом заміни ДР (4.62) можна понизити на один порядок.

Обчислюємо

Тому ДР (4.62) прийме вигляд

(4.63)

Скорочуючи на ( при може бути розвязком ДР (4.62)), перейдемо до ДР порядку .

Якщо – загальний розвязок останнього ДР, то

звідки (4.64) – загальний розвязок ДР (4.62). Розвязок міститься в формулі (4.64) при .

Пр 4.7 Знайти загальний розвязок ДР

К-во Просмотров: 158
Бесплатно скачать Реферат: Інтегрування і пониження порядку деяких диференціальних рівнянь з вищими похідними