Реферат: Иррациональные уравнения и неравенства

Решаются такие уравнения возведением обеих частей в степень. При возведении в четную степень возможно расширение области определения заданного уравнения. Поэтому при решении таких иррациональных уравнений обязательны проверка или нахождение области допустимых значений уравнений. При возведении в нечетную степень обеих частей иррационального уравнения область определения не меняется.

Иррациональные уравнения стандартного вида можно решить пользуясь следующим правилом:

Решение иррациональных уравнений стандартного вида:

а) Решить уравнение = x – 2,

Решение.

= x – 2,

2x – 1 = x2 – 4x + 4, Проверка:

x2 – 6x + 5 = 0, х = 5, = 5 – 2,

x1 = 5, 3 = 3

x2 = 1 – постор. корень х = 1, 1 – 2 ,

Ответ: 5 пост. к. 1 -1.

б) Решить уравнение = х + 4,

Решение.

= х + 4,

Ответ: -1

в) Решить уравнение х – 1 =

Решение.

х – 1 =

х3 – 3х2 + 3х – 1 = х2 – х – 1,

х3 – 4х2 + 4х = 0,

х(х2 – 4х + 4) = 0,

х = 0 или х2 – 4х + 4 = 0,

К-во Просмотров: 648
Бесплатно скачать Реферат: Иррациональные уравнения и неравенства