Реферат: Использование дифференциальных уравнений, передаточных и частотных передаточных функций

Всякая система, рассматриваемая с точки зрения зависимости выходных и входных величин как функций времени, носит название динамической системы. Система слежения и ее отдельные звенья относятся к динамическим системам. Для исследования динамических систем используются временные и частотные методы.

Временные методы используют дифференциальные уравнения и полученные с их помощью передаточные функции, переходные и весовые функции.

Частотные – используют частотные передаточные функции и логарифмические частотные характеристики.

Временные методы используются при исследовании линейных нестационарных систем. Для стационарных систем предпочтительно применение частотных методов.

Задачей исследования системы является определение реакции системы на входное воздействие, либо определение параметров систем.

Использование дифференциальных уравнений

Для составления дифференциального уравнения (ДУ), связывающего входные и выходные величины в системе, составляют дифференциальные (или алгебраические) уравнения, для всех звеньев, входящих в систему, на основе физики происходящих в них процессов. Число таких дифференциальных уравнений равно числу звеньев системы. Затем, оставляя входную и выходную величины в качестве основных, избавляются от промежуточных величин, производя последовательную подстановку одного уравнения во второе. Для упрощения процесса подстановки уравнения записывают в сокращенной форме.

В общем виде ДУ можно записать следующим образом:

, при (1)

x2 (t), x1 (t) – выходные и входные величины соответственно; a,b – коэффициенты.

ДУ может быть записано в сокращенной форме.

Введем обозначение .

Теперь мы можем формально вынести за знак суммы значения x2 (t) и x1 (t).

или

(2)

дифференциальные полиномы.

,

или же можно записать в сокращенной форме:

,

где ─ операторный коэффициент передачи.

Приведенную форму записи определяют как алгебраизированную (символическую).

Общее решение ДУ определяет изменение во времени управляемой величины при заданном входном воздействии, и позволяет, таким образом, полностью описать процессы в следящей системе. Общее решение ДУ является суммой общего решения однородного ДУ, получаемого из уравнения (1) приравниванием нулю его правой части, и частного решения неоднородного ДУ.

Однородное ДУ определяет характер собственных колебаний в системе. Его решение позволяет исследовать систему на устойчивость.

Неоднородное ДУ определяет реакцию системы на внешние воздействия. Его решение позволяет оценить точность воспроизведения задающего воздействия.

Использование передаточных функций

Для получения алгебраической формы записи надо перейти в область изображений по Лапласу.

Пусть система описывается уравнением (3.1) .

Применим преобразование Лапласа к обеим частям уравнения (1), учитывая, что:

,

где ─ переменная Лапласа;

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 243
Бесплатно скачать Реферат: Использование дифференциальных уравнений, передаточных и частотных передаточных функций