Реферат: Исследование распределения температуры в тонком цилиндрическом стержне

Нахождение М4 можно провести аналогично нахождению М2 в предыдущем пункте, но выражение для fIV (t) имеет довольно громоздкий вид. Поэтому правило Рунге – наиболее простой способ.

Обозначим через In и I2n значение интеграла I, полученное при разбиении промежутка интегрирования соответственно на n и 2n интервалов. Если выполнено равенство: |I2n -In | = 15d (*1), то |I-I2n |=d


????? , ??????? ? n=2, ????????? n ?? ??? ???, ???? ?? ?????? ??????????? ??????????? (*1), ?????:

(3.6)


???????? ??????? ??????? (3.7):

Результаты вычислений сведём в таблицу:

n In I2n
4 102.11
8 101.61 0.5017

По формуле (3.7) I = 101,61 что в пределах погрешности совпадает со значением, полученным по методу трапеций

n=8 n=4
ti (8) y8 ti (4) y4
0 1 0 1
27.25 0.9864
54.5 0.8959 54.5 0.8959
81.75 0.6901
109 0.4151 109 0.4151
136.25 0.1796
163.5 0.0514 163.5 0.0514
190.75 0.0089874
218 0.00088179 218 0.00088179

4. Вычисление времени Т0 установления режима

4.1 Решение уравнения комбинированным методом

Время установления режима определяется по формулам (1.6) и (1.7).

Проведём сначала отделение корней. Имеем y = ctg(x) и y = Ax. Приведём уравнение к виду: A x sin(x)-cos(x) = 0. Проведём процесс отделения корня.

F(x) -1 -0.6285 0.4843
x 0.01 0.05 0.1

т.е. x с [0.01;0.05]

Убедимся, что корень действительно существует и является единственным на выбранном интервале изоляции.

f(a) f(b)<0 – условие существования корня выполняется

f’(x) на [a;b] – знакопостоянна: f’(x)>0 – условие единственности также выполняется. Проведём уточнение с погрешностью не превышающей e=10-4

Строим касательные с того конца, где f(x) f”(x)>0


f?(x)=(2A+1)cos(x) ? A x sin(x). f?(x)>0 ?? (a;b), ????????????? ??????????? ?????? ??????, ? ????? ?????. ??????????? ????? ?? ?????? ???????????:

?? ?????? ????:

?????????? ????? ?? ???? ???????, ???? ?? ?????????? ???????:

Результаты вычислений заносим в таблицу:

n an bn f(an ) f(bn )
0 0.05 0.1 -0.6285 0.4843
1 0.07824 0.08366 -0.0908 0.0394
2 0.08202 0.08207 -9.1515 10-4 3.7121 10-4
3 0.08206 0.08206 -8.4666 10-8 3.4321 10-8

Т0 = 72,7176 секунд.

4.2 Решение уравнения комбинированным методом

Приведём f(x) = 0 к виду x = j(x). Для этого умножим обе части на произвольное число m, неравное нулю, и добавим к обеим частям х:

X = x - m f(x)


j(x) = x - m A x sin(x) + m cos(x)

В качестве m возьмём:

где М = max [f’(x)] на [a;b], а m = min [f’(x)] на [a’b]

В силу монотонности f’(x) на [a;b] имеем m = f’(а), М = f’(b). Тогда m = 0,045.


??????????? ? ????? ???? ?? ????????? ?????:

?????????? ????? ?? ??? ???, ???? ?? ?????????? ???????:

(q = max |j’(x)| на [a’b])

j’(x) на [a’b] монотонно убывает, поэтому максимум его модуля достигается на одном из концов.

j’(0,05) = 0,3322 j’(0,1) = -0,3322, следовательно, q = 0.3322 < 1. В этом случае выполняется условие сходимости и получается последовательность:

i xi j( xi ) D xi
0 0.075 0.082392 0.00739
1 0.082392 0.082025 0.000367
2 0.082025 0.08206 3.54 10-5
3 0.08206 0.082057 3.33 10-6
4 0.082057 0.082057 3.15 10-7

Итак, с погрешностью, меньшей 10-4 , имеем:

Т0 = 72,7176 с. , x = 0.03142

5. Решение краевой задачи


?????????? ????? ?????? ?????????. ??????? ?????? ??????? ? ????:

(5.1)


????? ????? ?????????? y = (U - q0 )/(q - q0 ), ??????? (5.1) ? ????:

(5.2)


e = sl (q - q0 ) =0.18, L/2 =0.0193. ? ???????? ?????? ????????? ??????? e.

?????, ????????? y(x) ? ????????? (5.2) ? ??????????????? ????? ??? ?????????? ???????? e, ???????:

(5.3)


??????????? ????? ??????? ??????? ????:

?? (5.2) ? (5.3) ??????? ????? ??????? ????????? ??? y0 :

где y0 с тильдой – частное решение данного неоднородного уравнения; y(1) и y(2) – линейно независимые решения однородного уравнения.


????? ?????????:

y0 общ = 1 + c1 ch(px)+c2 sh(px), где p = 0.01953


????????? ?????? ?? ????????? ???????:

откуда с1 = 0, с2 = -0,57; т.е. имеем функцию:

y0 = 1 - 0.57 sh(px)


????? ???????:

??????? ???????:

Дифференцируя и подставляя в уравнение, получим:

А1 = 0; А2 = -0,1083; В1 = 0; В2 = 17,1569;

Тогда общее решение для y1 имеет вид:


?3 = 0; ?4 = 0,0462

Перейдя к старой переменной U, получим:


q0 = 0; q1 = -374.11; q2 = -12.9863; q3 = 2057

???????? ?????????:

Пользуясь этой формулой, составим таблицу значений функции U(x):

x U(x) U
0 352.9075 353
0.0019 350.4901
0.0039 343.1972 343
0.0058 330.9053
0.0077 313.4042 313
0.0097 290.391
0.0116 261.4598 261
0.0135 226.0893
0.0154 1836255 184
0.0174 133.2579
0.0193 74 74

К-во Просмотров: 258
Бесплатно скачать Реферат: Исследование распределения температуры в тонком цилиндрическом стержне