Реферат: Исследование RC-генератора синусоидальных колебаний
C(1)=X(1)
KP=0
ENDIF
IF(X(1).GT.C(L).AND.X(1).GT.0)THEN
C(L)=X(1)
KP=1
ENDIF
IF(T.EQ.270)PRINT*,’T=270’,’ X(270)=’,X(1)
RETURN
END
В главном модуле введем исходные данные, обратимся к подпрограмме метода, отпечатаем полученные через общую область максимумы функции и обратимся к подпрограмме построения графика.
EXTERNAL PRAV,OUT
DIMENSION X(2,4),F(8),R(2,3),D(3,1000),C(300)
COMMON K,L,KP,D,C
READ *,N,TN,TK,HM,((X(K,J),K=1,N),J=1,2),E
K=0
L=1
C(1)=1
KP=1
CALL ARK(HM,TN,TK,X,R,F,N,E,PRAV,OUT,IER)
PRINT 1, (C(J),J=1,L)
1 FORMAT(I4/(5E15.7))
CALL KRIS(D,3,K,2,0,0.,0.)
END
4.9Результаты тестирования
Графики вычисленных путем решения дифференциального уравнения функций приведены на рисунке 4. Видно, что они близки к функциям и .
Рисунок 4
Амплитуды колебаний равны единице, период .
Выходной файл решения приведен ниже.