Реферат: Хеширование
Коллизия – это ситуация, когда h(K1) = h(K2), в то время как K1 ≠ K2. В этом случае, очевидно, необходимо найти новое место для хранения данных. Очевидно, что количество коллизий необходимо минимизировать. Методикам разрешения коллизий будет посвящен отдельный раздел ниже.
Хорошая хеш-функция должна удовлетворять двум требованиям:
- ее вычисление должно выполняться очень быстро;
- она должна минимизировать число коллизий.
Итак, первое свойство хорошей хеш-функции зависит от компьютера, а второе – от данных. Если бы все данные были случайными, то хеш-функции были бы очень простые (несколько битов ключа, например). Однако на практике случайные данные встречаются крайне редко, и приходится создавать функцию, которая зависела бы от всего ключа.
Теоретически невозможно определить хеш-функцию так, чтобы она создавала случайные данные из реальных неслучайных файлов. Однако на практике реально создать достаточно хорошую имитацию с помощью простых арифметических действий. Более того, зачастую можно использовать особенности данных для создания хеш-функций с минимальным числом коллизий (меньшим, чем при истинно случайных данных) [3].
Возможно, одним из самых очевидных и простых способов хеширования является метод середины квадрата, когда ключ возводится в квадрат и берется несколько цифр в середине. Здесь и далее предполагается, что ключ сначала приводится к целому числу, для совершения с ним арифметических операций. Однако такой способ хорошо работает до момента, когда нет большого количества нолей слева или справа. Многочисленные тесты показали хорошую работу двух основных типов хеширования, один из которых основан на делении, а другой на умножении. Впрочем, это не единственные методы, которые существуют, более того, они не всегда являются оптимальными.
Метод деления
Метод деления весьма прост – используется остаток от деления на M:
h(K) = K mod M
Надо тщательно выбирать эту константу. Если взять ее равной 100, а ключом будет случить год рождения, то распределение будет очень неравномерным для ряда задач (идентификация игроков юношеской бейсбольной лиги, например). Более того, при четной константе значение функции будет четным при четном K и нечетным - при нечетном, что приведет к нежелательному результату. Еще хуже обстоят дела, если M – это степень счисления компьютера, поскольку при этом результат будет зависеть только от нескольких цифр ключа справа. Точно также можно показать, что M не должно быть кратно трем, поскольку при буквенных ключах два из них, отличающиеся только перестановкой букв, могут давать числовые значения с разностью, кратной трем (см. [3], стр. 552). Приведенные рассуждения приводят к мысли, что лучше использовать простое число. В большинстве случаев подобный выбор вполне удовлетворителен.
Другой пример – ключ, являющийся символьной строкой С++. Хеш-функция отображает эту строку в целое число посредством суммирования первого и последнего символов и последующего вычисления остатка от деления на 101 (размер таблицы). Эта хеш-функция приводит к коллизии при одинаковых первом и последнем символах строки. Например, строки «start» и «slant» будут отображаться в индекс 29. Так же ведет себя хеш-функция, суммирующая все символы строки. Строки «bad» и «dab» преобразуются в один и тот же индекс. Лучшие результаты дает хеш-функция, производящая перемешивание битов в символах.
На практике, метод деления – самый распространенный [7].
Метод умножения (мультипликативный)
Для мультипликативного хеширования используется следующая формула:
h(K) = [M * ((C * K) mod 1)]
Здесь производится умножение ключа на некую константу С, лежащую в интервале [0..1]. После этого берется дробная часть этого выражения и умножается на некоторую константу M, выбранную таким образом, чтобы результат не вышел за границы хеш-таблицы. Оператор [ ] возвращает наибольшее целое, которое меньше аргумента.
Если константа С выбрана верно, то можно добиться очень хороших результатов, однако, этот выбор сложно сделать. Дональд Кнут (см. [3], стр. 553) отмечает, что умножение может иногда выполняться быстрее деления.
Мультипликативный метод хорошо использует то, что реальные файлы неслучайны. Например, часто множества ключей представляют собой арифметические прогрессии, когда в файле содержатся ключи {K, K + d, K + 2d, …, K + td}. Например, рассмотрим имена типа {PART1, PART2, …, PARTN}. Мультипликативный метод преобразует арифметическую прогрессию в приближенно арифметическую прогрессию h(K), h(K + d), h(K + 2d),… различных хеш-значений, уменьшая число коллизий по сравнению со случайной ситуацией. Впрочем, справедливости ради надо заметить, что метод деления обладает тем же свойством.
Частным случаем выбора константы является значение золотого сечения φ = (√5 - 1)/2 ≈ 0,6180339887. Если взять последовательность {φ}, {2φ}, {3φ},... где оператор { } возвращает дробную часть аргумента, то на отрезке [0..1] она будет распределена очень равномерно. Другими словами, каждое новое значение будет попадать в наибольший интервал. Это явление было впервые замечено Я. Одерфельдом (J. Oderfeld) и доказано С. Сверчковски (S. Świerczkowski) (см. [8]). В доказательстве играют важную роль числа Фибоначчи. Применительно к хешированию это значит, что если в качестве константы С выбрать золотое сечение, то функция будет достаточно хорошо рассеивать ключи вида {PART1, PART2, …, PARTN}. Такое хеширование называется хешированием Фибоначчи. Впрочем, существует ряд ключей (когда изменение происходит не в последней позиции), когда хеширование Фибоначчи оказывается не самым оптимальным [3].
Динамическое хеширование
Описанные выше методы хеширования являются статическими, т.е. сначала выделяется некая хеш-таблица, под ее размер подбираются константы для хеш-функции. К сожалению, это не подходит для задач, в которых размер базы данных меняется часто и значительно [9]. По мере роста базы данных можно
- пользоваться изначальной хеш-функцией, теряя производительность из-за роста коллизий;
- выбрать хеш-функцию «с запасом», что повлечет неоправданные потери дискового пространства;
- периодически менять функцию, пересчитывать все адреса. Это отнимает очень много ресурсов и выводит из строя базу на некоторое время.
Существует техника, позволяющая динамически менять размер хеш-структуры [10]. Это – динамическое хеширование. Хеш-функция генерирует так называемый псевдоключ (“pseudokey”), который используется лишь частично для доступа к элементу. Другими словами, генерируется достаточно длинная битовая последовательность, которая должна быть достаточна для адресации всех потенциально возможных элементов. В то время, как при статическом хешировании потребовалась бы очень большая таблица (которая обычно хранится в оперативной памяти для ускорения доступа), здесь размер занятой памяти прямо пропорционален количеству элементов в базе данных. Каждая запись в таблице хранится не отдельно, а в каком-то блоке (“bucket”). Эти блоки совпадают с физическими блоками на устройстве хранения данных. Если в блоке нет больше места, чтобы вместить запись, то блок делится на два, а на его место ставится указатель на два новых блока.
Задача состоит в том, чтобы построить бинарное дерево, на концах ветвей которого были бы указатели на блоки, а навигация осуществлялась бы на основе псевдоключа. Узлы дерева могут быть двух видов: узлы, которые показывают на другие узлы или узлы, которые показывают на блоки. Например, пусть узел имеет такой вид, если он показывает на блок:
Zero |
Null |
Bucket |
Указатель |
One |
Null |
Если же он будет показывать на два других узла, то он будет иметь такой вид:
Zero |
Адрес a |
К-во Просмотров: 552
Бесплатно скачать Реферат: Хеширование
|