Реферат: Химия металлоорганических соединений
Реакция присоединения металлоорганических соединений щелочных металлов к соединениям с двойными связями была впервые осуществлена К. Циглером (1928 г.) на примере взаимодействия фенилизопропилкалия со стильбеном. Течение реакции легко контролировать по обесцвечиванию фиолетово-красной окраски фенилизопропилкалия.
2. ЭЛЕМЕНТЫ ВТОРОЙ ГРУППЫ
Элементы второй группы имеют на внешней электронной оболочке два неспаренных электрона, поэтому они двухвалентны.
Преобладающее практическое значение имеют органические соединения двух металлов второй группы: магния и ртути.
Металл может быть связан с одним органическим остатком (алкилом или арилом), например R - Me - Hal : , бромид метилмагния, или с двумя органическими остатками (алкилами или арилами), например R - Me - R ’ : , диэтилртуть.
2.1 Органические соединения магния
Магнийорганические соединения были широко введены в практику органического синтеза В. Гриньяром (1900 г.) и нашли большое применение в органической химии. Образование натнийорганинческих соединений наблюдал за год до этого учитель В. Гриньяра — Ф. Барбье.
Получены магнийорганические соединения почти всех классов органических веществ. Синтезы при участии магнийорганических соединений являются одним из важных препаративных методов в органической химии; описано свыше 20 тысяч синтезов при помощи магнийорганических соединений.
Способы получения. 1. В среде эфира. Магнийорганические соединения образуются обычно при взаимодействии галогеноалкилов (арилов) с металлическим магнием в среде сухого эфира. Реакция идет при отсутствии влаги. В некоторых случаях реакцию инициируют, добавляя каталитические количества йода или дибромэтана.
2. Безэфирный метод синтеза. Главным препятствием к использованию магнийорганнческих соединений в промышленном органическом синтезе является применение огнеопасного этилового эфира в качестве растворителя. Поэтому были разработаны безэфирные методы синтеза магнийорганических соединений.
Образование магнийорганических соединений из галогеноалкилов и магния катализируется галоидными солями или кислородными соединениями различных металлов (Hg , Al , Sn ) и неметаллов (Si , Sb , P ) или их алкильными производными. Например, образование магнийорганического соединения в среде ароматических углеводородов (бензола, толуола) инициируется каталитическим количеством тетраэтоксисилана:
Полученное магнийорганическое соединение далее может быть использовано для синтеза кремнийорганических соединений:
3. Синтез винильных магнийорганических соединений в тетрагидрофуране. Долгое время были безуспешными попытки синтеза магнийорганических соединений с винильными радикалами из галогенвинилов и магния. Причиной этих неудач была незначительная подвижность галогенов при двойной связи. Однако применение в качестве реакционной среды тетрагидрофурана, а также тетрагидропирана, этиловых и дибутиловых эфиров этиленгликоля позволило осуществить эту реакцию (Г. Норман, 1954 г.):
Реакционная способность винильных магнийорганических производных так же высока, как алкильных магниевых соединений, они широко используются в реакциях введения винильного остатки в органические соединения (реакция винилирования).
Строение магнийорганических соединений может быть выражено простой формулой R — Mg — Hal , пригодной для оценки стехиометрии реакции. Однако в действительности магнийорганические соединения имеют более сложное строение, определяемое многими фактами (природой органического радикала, галогена и растворителя).
Мономерные формы (R — Mg — Hal ) преобладают при низких концентрациях, в нуклеофильных растворителях и для бромидов и иодидов. Равновесие смещается к димерным () и полимерным формам при увеличении концентрации магнийорганического соединения и для хлоридов. Мономерные магнийорганические соединения могут содержать равновесную смесь: алкилмагнийгалогениды (), диалкилмагниевые соединения (), ионные магнийорганические соединения (,,). Несмотря на их небольшую концентрацию, они играют существенную роль в реакциях:
Магнийорганические соединения сольватируются растворителями (например, этиловым эфиром), образуя кристаллические комплексы, в которых установлено взаимодействие между атомами магния и кислорода.
Химические свойства. Магнийорганические соединения не выделяются в свободном виде, обладают высокой реакционной способностью и непосредственно вводятся в дальнейшие реакции. Они вступают в реакции обмена, остаток Mg — Hal замешается водородом, алкильными радикалами, различными металлами и неметаллами. Однако наиболее характерной является реакция присоединения магнийорганических соединений к двойным поляризованным связям. Как раз эти реакции определили выдающуюся роль магнийорганических соединений в органическом синтезе. Основное значение этих реакций заключается в образовании новых углерод-углеродных связей.
Взаимодействие с соединениями, содержащими подвижный атом водорода. Вода, спирты, кислоты разлагают магнийорганические соединения с образованием углеводородов:
Исходя из этой реакции, Л. А. Чугаевым и Ф. В. Церевитиновым был разработан классический количественный газометрический метод определения подвижного водорода в органических соединениях (метод Чугаева—Церевитинова).
Магнийорганические соединения металлируют ацетилен и образуют дибромдимагнийацетилен (Ж. Иоцич):
Окисление магнийорганических соединений до спиртов: