Реферат: Классификация систем массового обслуживания и их основные элементы

· в моментt одинприбор былзанятобслуживанием требования, все остальные приборы свободны; за вре мяh обслуживание требованиябыло завершено иновых требований не поступило.

Остальные возможности, как-то: были заняты два или три прибора и за время h работа на них біла закончена - имеют вероятность о(h), как легко в этом убедится.

Вероятность первого из указанных событий равна

,

вероятность второго события

.

Таким образом

.

Отсюда очевидным образом приходим уравнению

Перейдём теперь к составлению уравнений для при 1. Рассмотрим отдельно два различных случая: 1 и . Пусть в начале 1. Перечислим только существенные состояния, из которых можно прийти в состояние в момент t+h. Эти состояния таковы:

В момент t система находилась в состоянии , за время h новых требований не поступило и ни один прибор не окончил обслуживания. Вероятность этого события равна:

В момент t система находилась в состоянии , за время h поступило новое требование, но ни одно ранее находившееся требование не было закончено обслуживанием. Вероятность этого события равна

В момент t система находилась в состоянии , за время h новых требований не поступило, но одно требование было обслужено. Вероятность этого равна

Все остальные мыслимые возможности перехода в состояние за промежуток времени h имеют вероятность, равную о(h).

Собрав воедино найденные вероятности, получаем следующее равенство:

Несложные преобразования приводят от этого равенства к такому уравнению для 1;

(4)

Подобные же рассуждения для приводят к уравнению

(5)

Д ля оп ределения вероятносте й получили бесконечную систему дифференциальных уравнений (2)-( 5).Её реше ­ние п редстав ляет н есомненн ые те хническ ие трудно сти .

4. Опр еделение стациона рного р ешени я.

В теори и массового обслуживания обычно из учают ли шь устан овившееся решение для . Существование таких решений устан авливается так называемы ми эргодическими теоремами , некоторыеиз ни х п оз д­нее будут установлены. В рассматриваемо й задаче оказывается, что предельные или, как говорят об ычн о, стационарн ые вероятн ости существ уют. Введём для н их обозначения . За­метим доп олни тельн о, чтоп ри.

Ск аз ан ное позволяет заключи ть, что у равнения( 3), (4), ( 5) для ст аци онарных вероятн остей п ри ни мают следующ ий вид:

(6)

при 1

(7)

при

(8)

К этим уравнениям добавляется нормирующее условие

(9)

Для решения полученной бесконечной алгебраической системы введём обозначения: при 1

при

Система уравнений (6)-(8) в этих обозначениях принимает такой вид:

при

К-во Просмотров: 552
Бесплатно скачать Реферат: Классификация систем массового обслуживания и их основные элементы