Реферат: Классификация систем массового обслуживания и их основные элементы
т.е. при 1
(10)
и при
(11)
Введём для удобства записи обозначение
.
Уравнение (10) позволяет заключить, что при 1
(12)
При из (11) находим, что
и, следовательно, при
(13)
Остаётся найти . Для этого в (9) подставляем выражения из (12) и (13). В результате
так как бесконечная сумма, стоящая в квадратных скобках, сходится только при условии, что
(14)
то при этом предположении находим равенство
(15)
Если условие (14) не выполнено, т.е. если , то ряд, стоящий в квадратнойскобке уравнения для определения , расходится и, значит, должно быть равно 0. Но при этом, как следует из (12) и (13), при всех оказывается .
Методы